

Reliable Electronics? Precise Current Measurements May Tell You Otherwise...

Hans Manhaeve Ridgetop Europe

Overview

Reliable Electronics

Precise current measurements ?

- Accurate Accuracy
- Resolution
- Repeatability
- Understanding specifications
- Precise current measurements & reliability
 - Detecting failures
 - Burn-in replacement
- Cases

Ridgetop Europe

Conclusions

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

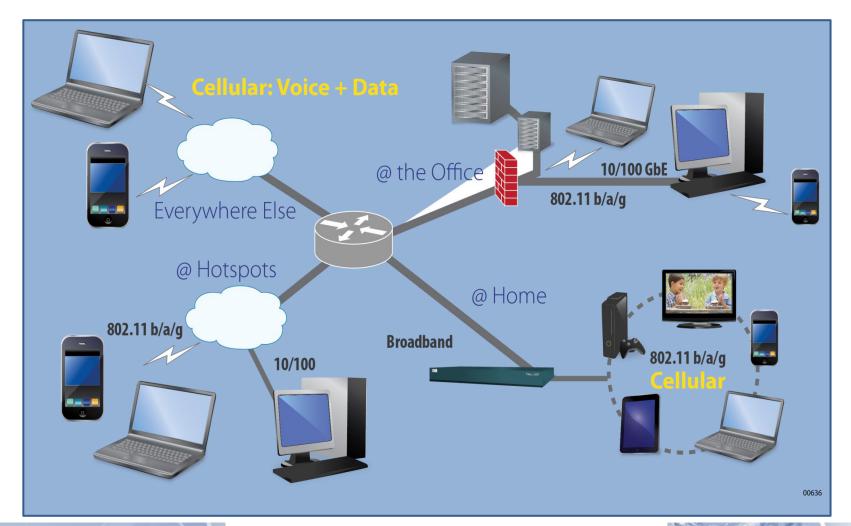
Overview

Reliable Electronics

Precise current measurements ?

- Accurate Accuracy
- Resolution
- Repeatability
- Understanding specifications
- Precise current measurements & reliability
 - Detecting failures
 - Burn-in replacement
- Cases

Ridgetop Europe


Conclusions

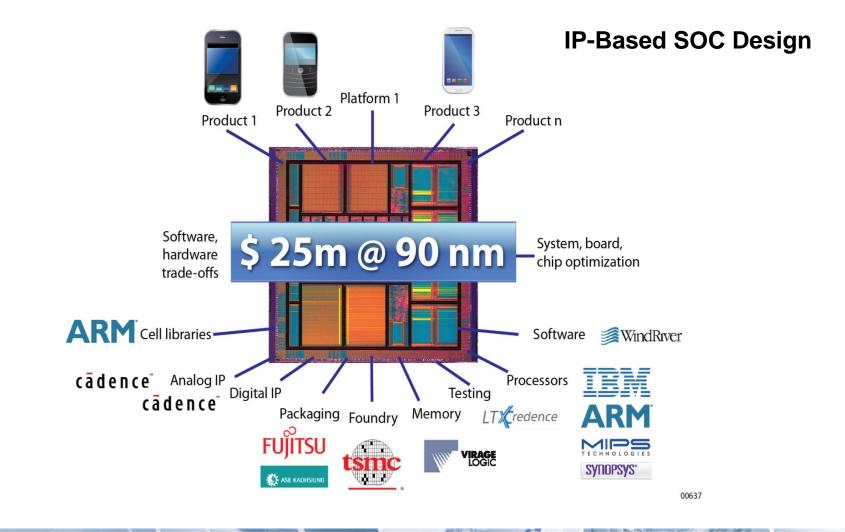
Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

3

Ridgeto

The Need for Test & Reliable Operation

Any Device, Any Time, Anywhere


Ridgetop Europe

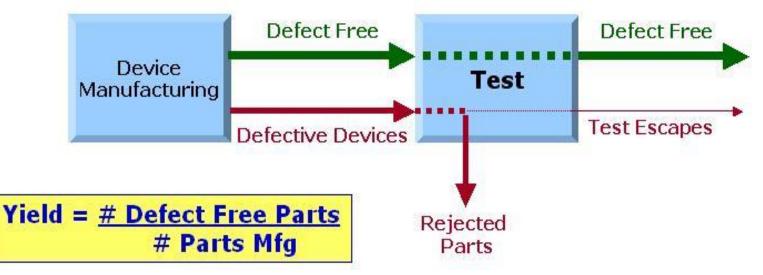
Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

© 2014 - Ridgetop Group & Ridgetop Europe – all rights reserved – copying or distributing without written permission is strictly forbidden

The Need for Test & Reliable Operation

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

5


Ridgetop

© 2014 - Ridgetop Group & Ridgetop Europe – all rights reserved – copying or distributing without written permission is strictly forbidden

Ridgetop Europe

The Need for Test

 But we still need to test every single transistor / every single unit

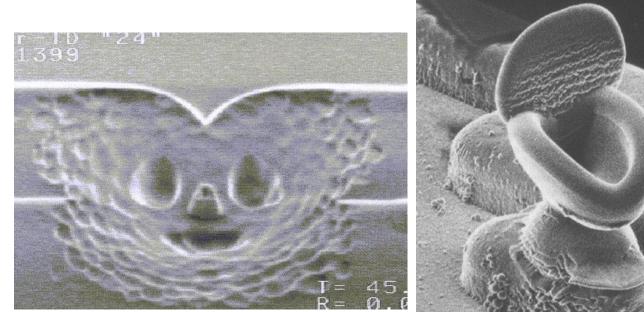
 Test is an important factor of product manufacturing costs (15 → 50 →%)

Ridgetop Europe

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

© 2014 - Ridgetop Group & Ridgetop Europe – all rights reserved – copying or distributing without written permission is strictly forbidden

Find the Defect


Badwater, Death Valley -85.5m (-282ft)

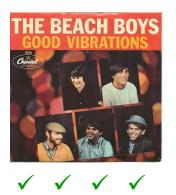
Ridgetop Europe

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

The Need for Test

Madge, ITC04

Butler, ITC07



Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

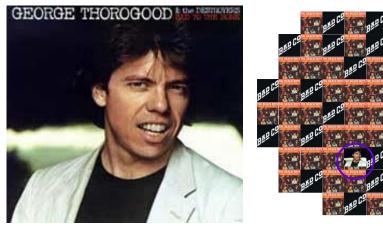
© 2014 - Ridgetop Group & Ridgetop Europe – all rights reserved – copying or distributing without written permission is strictly forbidden

• Yield has a simple definition $Yield = \frac{good \ chips}{total \ chips}$

9

Ridgeto

 Challenge is in separating "good" from "bad"


Ridgetop Europe

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

X X

Yield and Reliability - Ambiguity

$Measured Yield = \frac{good parts + test escapes - type I failures}{I}$

all parts

GEORGE THOROGOOD

BAD TO THE BONE

10

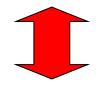
Ridaeto

- Competing definitions of "good"
 - Ideal: works in customer's application
 - \rightarrow Can't measure this until it's too late!
 - Is high leakage from a defect or fast transistors?
 - Most chips work at 0.7V, this one doesn't
 - How complete are these tests?
- Eventually need to agree on "passes the tests we apply"
- Result: Test can't be ignored when discussing yield!

Ridgetop Europe

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

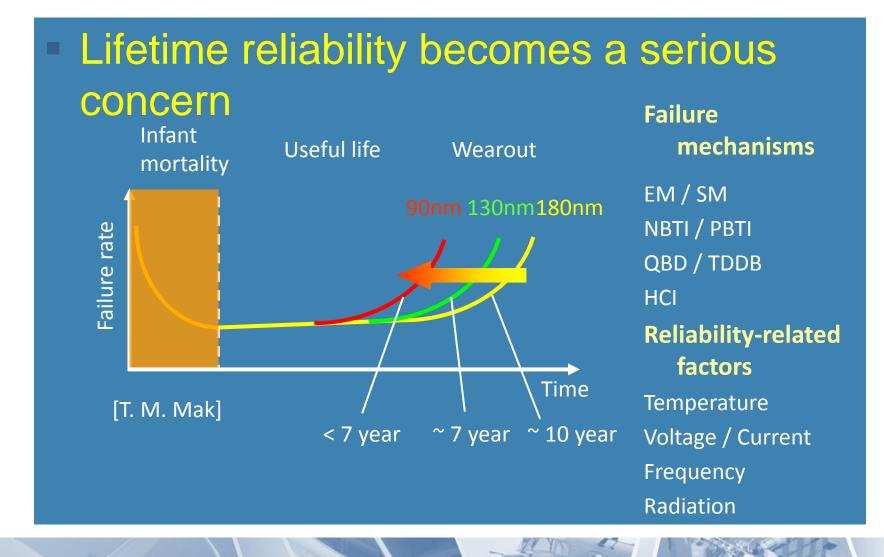
- Historically, testing was functional
 - Does the device do what it is supposed to?
 - Function primarily defined logically
 - Yield relates to function
- Next, structural tests were developed
 - Is every circuit structure (e.g., gate) present and working?
 - Coverage metrics are logical (stuck-at fault coverage)
 - Yield relates to structure
- Defect-oriented testing starts with defects
 - What could go wrong with this device?
 - If it went wrong, what would change about the device?
 - Any measurable behavior could be affected, not just function
 timing, current, voltage, temperature dependence
 - Yield relates to absence of defects


Ridgetop Europe

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

11

Ridaeta


- Semiconductor evolution enables further integration
 - Transistors are nearly for free
- New processes are used for mass production long before they are mature
 - Systematic and random defects
 - Reliability concerns
- Increasing device complexity
 - The "embedded" world
 - Analog Digital Memory Software

- Market demands for cheaper and better electronics
- Market demands for RELIABLE electronics

Ridgetop Europe

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

Ridgetop Europe

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

Overview

Reliable Electronics

Precise current measurements ?

- Accurate Accuracy
- Resolution
- Repeatability
- Understanding specifications

Precise current measurements & reliability

- Detecting failures
- Burn-in replacement
- Cases

Ridgetop Europe

Conclusions

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

14

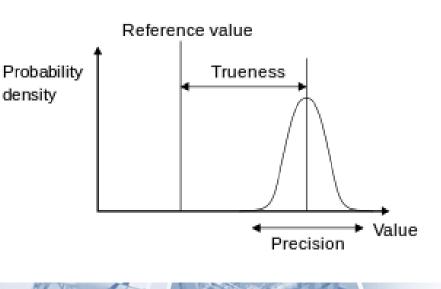
Ridgeto

Qualifying Measurement Results

- Quality and reliability decisions require data
- Gathering data == making measurements
- Measurements are qualified in terms of
 - Accuracy
 - Resolution

Ridgetop Europe

Precision - Repeatability


Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

© 2014 - Ridgetop Group & Ridgetop Europe – all rights reserved – copying or distributing without written permission is strictly forbidden

Accurate - Accuracy

- Accurate
 - Correct, exact, error-free, on target, …
- Accuracy
 - Measurement $\leftarrow \rightarrow$ actual (true) value
 - ISO 5725-1:
 - \rightarrow Accuracy consists of
 - Trueness (proximity of measurement results to the true value)
 - Precision (repeatability or reproducibility of the measurement)

Source: Wikipedia

16

Ridgeto

Ridgetop Europe

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

Resolution

Resolution

- smallest change in the underlying physical quantity that produces a response in the measurement
- Linked to # of bits
- Effective resolution
 - # of bits $\leftarrow \rightarrow$ ENOB
 - S/N ratio of signal path
 - Sampling frequency
 - Sampling technique used

Ridgetop Europe

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

17

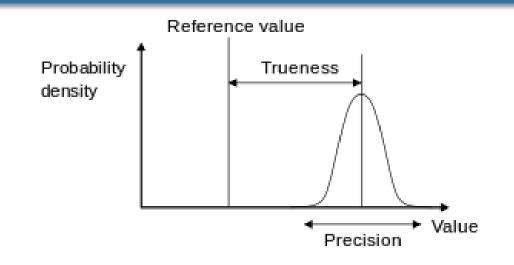
Ridgeto

Repeatability

Precision / Repeatability

- variation in measurements taken by a single person or instrument on the same item and under the same conditions
- how close the measured values are to each other

Reproducibility


Ridgetop Europe

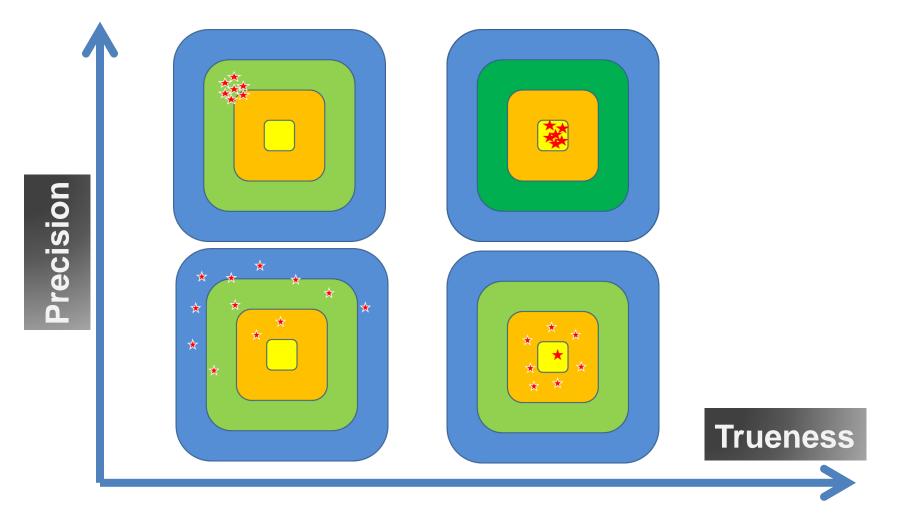
- degree to which repeated measurements under unchanged conditions show the same results
- Also function of signal stability / settling

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

18

The Test Perspective

- Trueness
 - Relates to systematic errors
 - Subject to calibration
 - Not so critical what matters is that "all are treated equal"
- Precision
 - Relates to random errors
 - Reflects instrument quality and performance
 - Is key to decision making


Ridgetop Europe

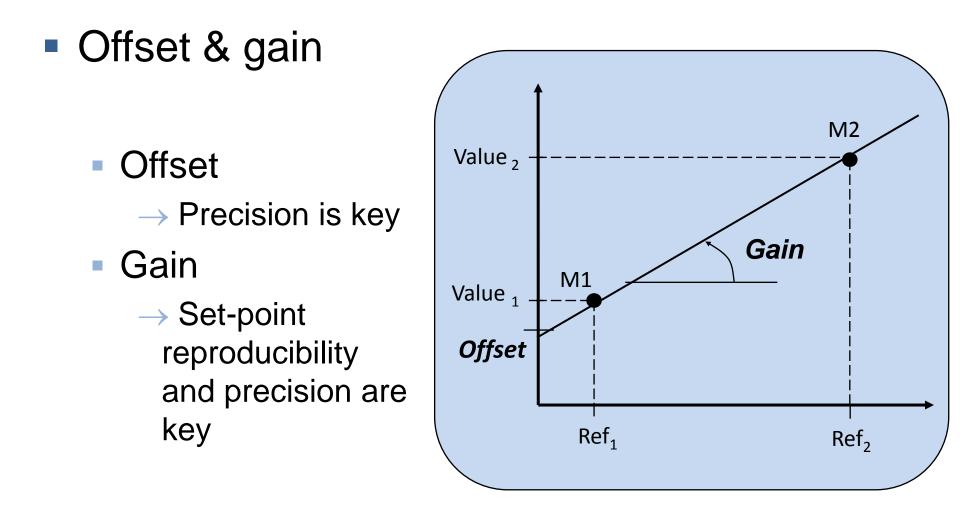
Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

19

Ridgeto

Trueness versus precision

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu


20

Ridgetop

© 2014 - Ridgetop Group & Ridgetop Europe – all rights reserved – copying or distributing without written permission is strictly forbidden

Ridgetop Europe

Calibration Considerations

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

21

Ridgeto

© 2014 - Ridgetop Group & Ridgetop Europe – all rights reserved – copying or distributing without written permission is strictly forbidden

Ridgetop Europe

Example: Teradyne Catalyst

matrix source specifications

Range	Resolution	Accuracy		Average	Error
200mA	25 uA	+/-(0.1% + 100 uA)	+/-	225	uA
100mA	12.5 uA	+/-(0.1% + 50 uA)	+/-	112.5	uA
50mA	6.25 uA	+/-(0.1% + 25 uA)	+/-	56.25	uA
20mA	2.5 uA	+/-(0.1% + 10 uA)	+/-	22.5	uA
10mA	1.25 uA	+/-(0.1% + 5 uA)	+/-	11.25	uA
5m /	625 nA		L/	5 625	11.
2mA	250 nA	+/-(0.1% + 1 uA)	+/-	2.25	uA
1mA	125 NA	+/-(U.1% + 6UU NA + 1 NA/V)	+/-	1.225	UA
500uA	62.5 nA	+/-(0.1% + 350 nA + 1 nA/V)	+/-	663	nA
200uA	25 nA	+/-(0.1% + 200 nA + 1 nA/V)	+/-	325	nA
100uA	12.5 nA	+/-(0.1% + 150 nA + 1 nA/V)	+/-	213	nA
50uA	6.25 nA	+/-(0.1% + 125 nA + 1 nA/V)	+/-	156	nA
20uA	2.5 nA	+/-(0.1% + 110 nA + 1 nA/V)	+/-	123	nA
10uA	1.25 nA	+/-(0.1% + 105 nA + 1 nA/V)	+/-	116	nA
5uA	625 pA	+/-(0.1% + 103 nA + 1 nA/V)	+/-	113	nA

Ridgetop Europe

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

© 2014 - Ridgetop Group & Ridgetop Europe – all rights reserved – copying or distributing without written permission is strictly forbidden

Example: Teradyne Catalyst matrix source

- 2mA range, 14 bit
- Nominal resolution: 250nA
- Accuracy: ± (0.1% measure + 1uA)

Measurement error: min: ±1.25µA -- max: ±3.25µA

True Value: 1.5mA

 \rightarrow Measured value: 1.49725 – 1.50275mA (0.37%)

- True Value: 100µA
 - \rightarrow Measured value: 98.65 101.35µA

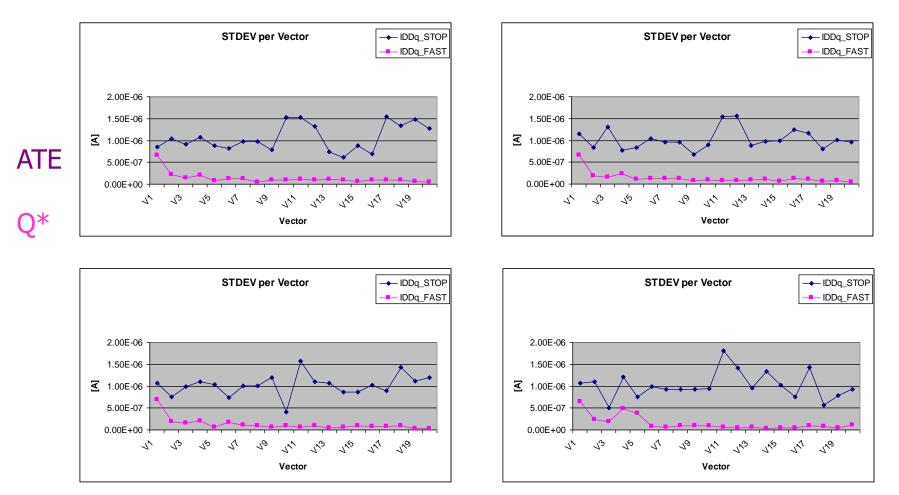
Ridgetop Europe

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

(2.7%)

Ridgeta

Q-Star QD-1011 specs:


$\Delta I_{DDQ RMS} = f(C_L, \#Samples) [nA]^{(5)}$						
Measurement Range ⁽¹⁾	CL			# Samples ⁽²⁾		
measurement Range	0.0 – 0.5 μF ⁽³⁾	0.5 – 2.0 μF ⁽³⁾	1.0 – 10.0 μF ⁽⁴⁾	# Samples		
	20	50	330	1		
0 – 100 µA	15	25	230	4		
	10	15	110	16		
	50	90	500	1		
0 – 1 mA	30	60	300	4		
	15	20	150	16		
	360	400	550	1		
0 – 10 mA	200	220	290	4		
	125	130	180	16		
	2200	2200	2200	1		
0 – 30 mA	700	700	700	4		
	220	220	220	16		

Ridgetop Europe

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

24

Ridgeto

IDDQ Measurement repeatability, 20 strobes, 10 iterations per strobe

Ridgetop Europe

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

25

Ridgetop

Overview

- Reliable Electronics
- Precise current measurements ?
 - Accurate Accuracy
 - Resolution
 - Repeatability
 - Understanding specifications

Precise current measurements & reliability

- Detecting failures
- Burn-in replacement
- Cases

Ridgetop Europe

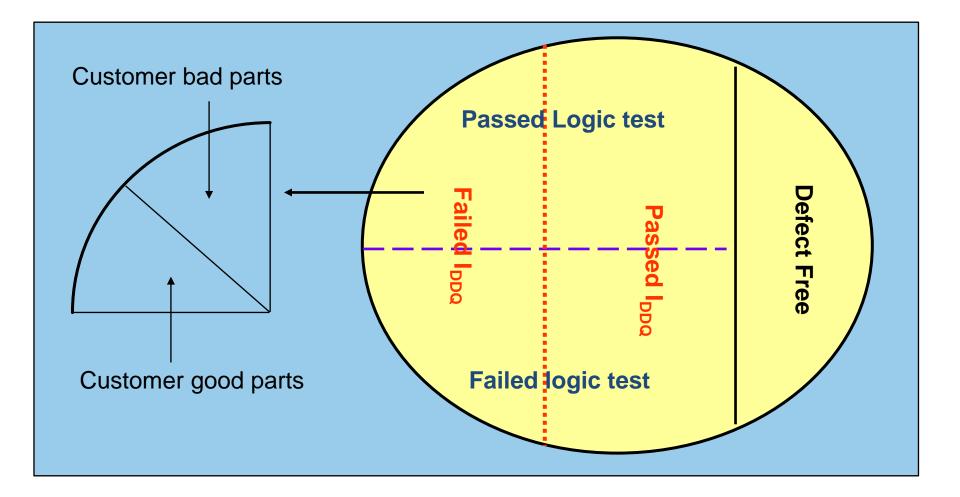
Conclusions

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

26

Ridgeto

Current & Reliability


Deviations in current behavior

- indication for reliability risks of devices and systems.
- Often overlooked as focus is typically on functional behavior
- Research results published by IBM and Sematech clearly shows that "IDDQ-only" failures are posing reliability risks.
- High correlation between burn-in failures and IDDQ test failures.
- Appropriate current measurements can easily reveal problem parts/systems
 - Information is "hidden" in both static as well as dynamic current behavior

Ridgetop Europe

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

Test Qualification

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

© 2014 - Ridgetop Group & Ridgetop Europe – all rights reserved – copying or distributing without written permission is strictly forbidden

Ridgetop Europe

- What coverage do we need ?
 - 4 out of 10 IDDQ only failures pose problems
 - Desired : 100 (10) (1) ppm reliability level
 - \rightarrow Acceptable defect level : 250 (25) (2.5) ppm
 - \rightarrow Case 1 : "IDDQ yield loss" : 5% (50000ppm)
 - Required IDDQ coverage : 99.5% (99.95%) (99.995%)
 - \rightarrow Case 2 : "IDDQ yield loss" : 0.1% (1000ppm)
 - Required IDDQ coverage : 75% (97.5%) (99.75%)

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

29

Ridgeto

© 2014 - Ridgetop Group & Ridgetop Europe – all rights reserved – copying or distributing without written permission is strictly forbidden

Ridgetop Europe

The Value of Eliminating Burn-In

INTEL : 1.25 M\$ savings

- product : i960JX CPU
- elimination of Burn-in

Ridgetop Europe

- SEMATECH Consortium
 - monthly production of 1 M IC's
 - savings ranging from 267 k\$ to 1.95 M\$ (monthly !)

 \rightarrow Burn-in replaced by I_{DDQ} + voltage stress

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

30

Ridgeto

Overview

- Reliable Electronics
- Precise current measurements ?
 - Accurate Accuracy
 - Resolution
 - Repeatability
 - Understanding specifications
- Precise current measurements & reliability
 - Detecting failures
 - Burn-in replacement
- Cases

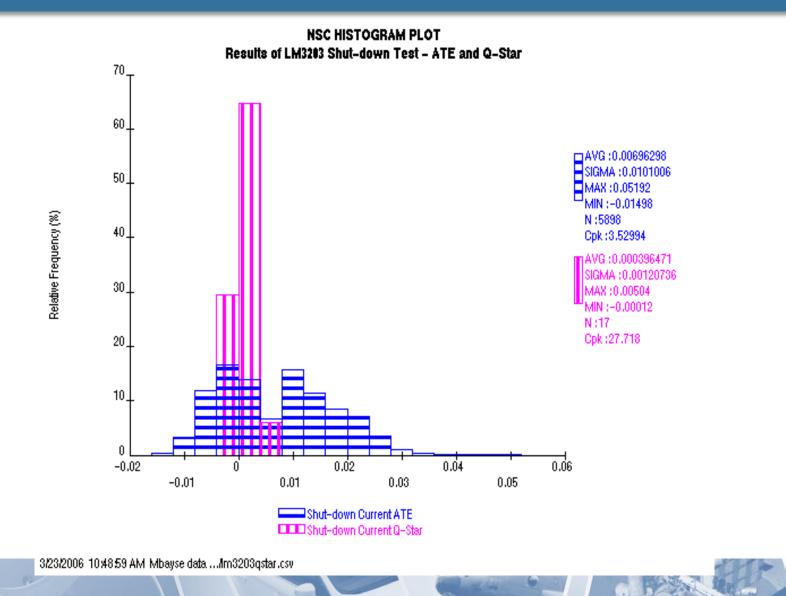
Ridgetop Europe

Conclusions

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

31

Ridgeto


Case 1:

Ridgetop Europe

- Qualification of a LM3203 voltage regulator
- Data Source: National Semiconductor
- Test Subject: Shutdown current
- Test Focus: Instrument precision

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu © 2014 - Ridgetop Group & Ridgetop Europe – all rights reserved – copying or distributing without written permission is strictly forbidden

Ridgetop Europe

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

© 2014 - Ridgetop Group & Ridgetop Europe – all rights reserved – copying or distributing without written permission is strictly forbidden

33

Ridgetop

Considerations

Ridgetop Europe

- Q-Star QD-1011 based measurements show a tighter distribution and a higher measurement repeatability.
 - \rightarrow Measurement repeatability of 1-2nA for a 100µA module was obtained (0.002% of range)
- The improved measurement quality enabled easy detection of outlier devices that escape the ATE current based tests that are marginal to comprehensive time expensive specification tests and lead to field failures.
- Additional experiments confirmed the correctness of the QD-1011 results

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

34

Ridgeta

Conclusions

- An IDDx based test strategy using Q-Star add-on current measurement instrumentation has proven to provide improved measurement quality combined with test cost reduction.
- Reduction of Field failure rates and Field returns
- Further benefits include test time reduction, measurable improvement in test quality and test confidence.
- The approach provides a common test solution that can be applied across device technologies and product mixes and has been successfully adopted as a working flow in the production test environment.

Ridgetop Europe Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu © 2014 - Ridgetop Group & Ridgetop Europe – all rights reserved – copying or distributing without written permission is strictly forbidden

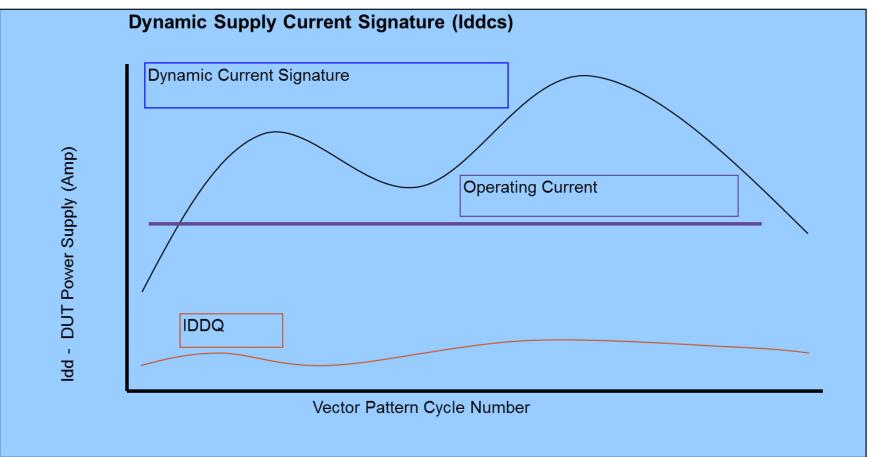
Case 2

- Reliability issue with high performance network device
- Data Source: LSI Logic
- Test Subject: Power Profiling
- Test Focus: Instrument precision

Ridgetop Europe Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu © 2014 - Ridgetop Group & Ridgetop Europe – all rights reserved – copying or distributing without written permission is strictly forbidden

Field return issue

Ridgetop Europe

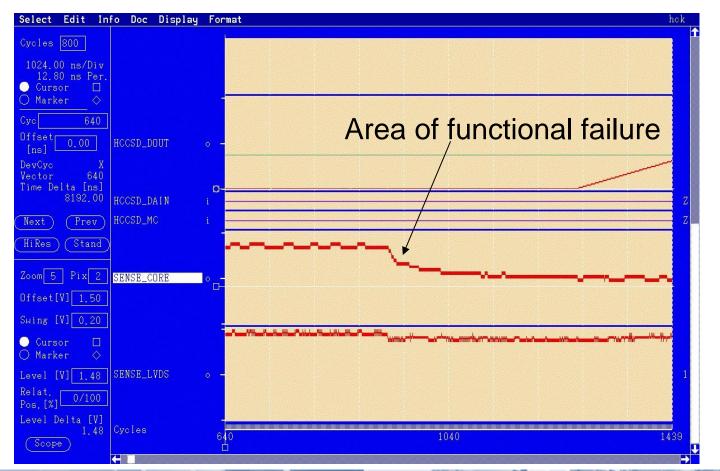

- Limitation of test platform measurement capabilities was masking devices with potential reliability risk
- Detailed FA on field returns revealed
 - \rightarrow Sensitivity to Memory-BIST failures @ Low Vdd
 - \rightarrow VDD droop on internal supply test pin under particular conditions
- IC Design/Application Engineers wanted better Power Management
 - Device power profile and marketing requirements
 - Feedback to design tools for software tool calibration on power consumption
- Solution: Deployment of QT-1411

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

37

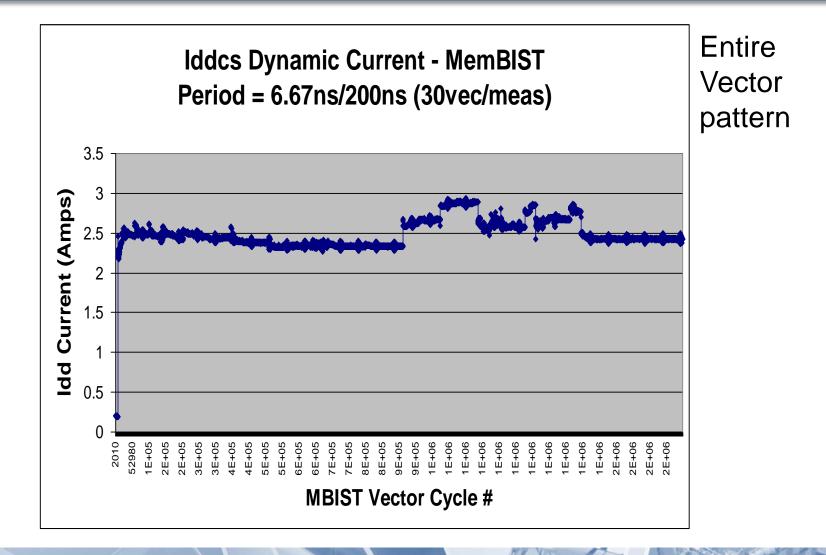
Ridaeta

Current behavior



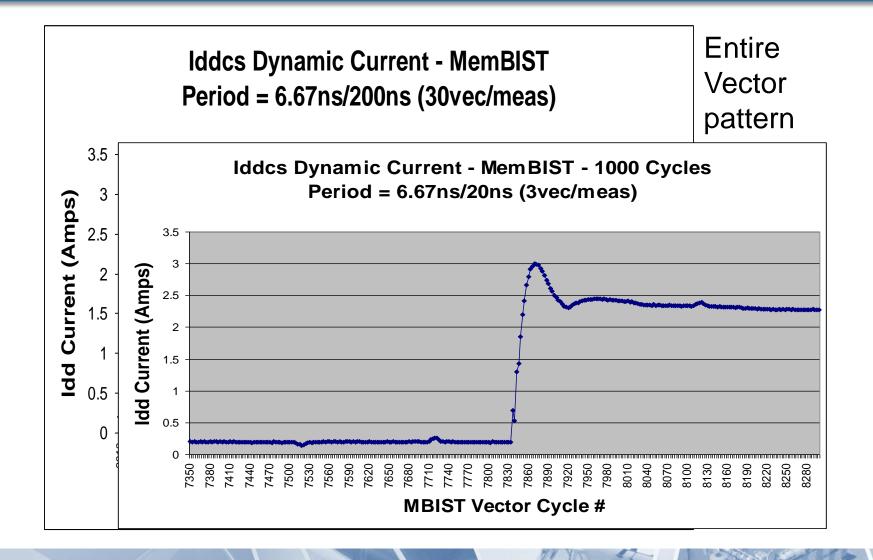
Ridgetop Europe

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu


Initial problem observation: VDD droop

Ridgetop Europe

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu


Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

40

Ridgetop

© 2014 - Ridgetop Group & Ridgetop Europe – all rights reserved – copying or distributing without written permission is strictly forbidden

Ridgetop Europe

Ridgetop Europe

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

© 2014 - Ridgetop Group & Ridgetop Europe – all rights reserved – copying or distributing without written permission is strictly forbidden

41 Ridgeto

Benefits of good power profiling:

Design engineering

- \rightarrow design verifies marketing requirements
- → early and easy design tools adjustments for faster time to market

Test engineering

- \rightarrow identification of current and voltage droop issues
- \rightarrow lower cost of test with faster test program debugging and execution

Product Engineering

 \rightarrow better tool to monitor the silicon process and faster identifications of variances and processing speeds

Failure analysis

 \rightarrow identification of IC fault locations with the comparison of the known good device current signature

Ridgetop Europe

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

Conclusions

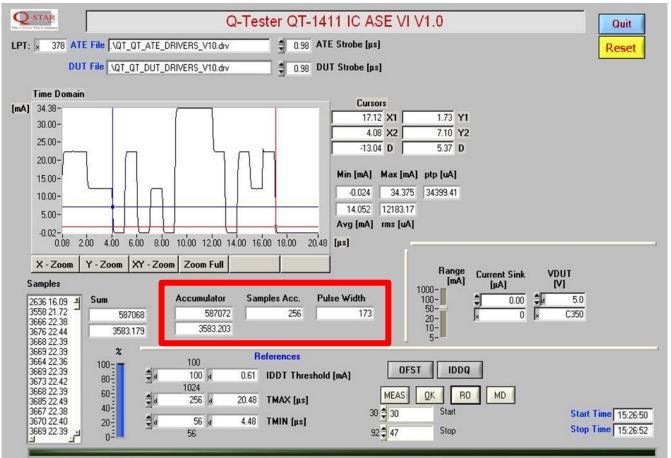
Ridgetop Europe

- Q-Star's QT-1411 met LSI's dynamic signature requirements by providing
 - ightarrow fast and accurate results
 - \rightarrow flexible sampling rate
 - \rightarrow fast and easy implementation on the V93000
- The dynamic current signature resulted in
 - \rightarrow faster time to market
 - \rightarrow Improved test quality
 - \rightarrow Increased device & system reliability
 - \rightarrow Cost of Test savings

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

Other examples

- Freescale:
 - "Making use of Q-Star Test's QD-1020 product allows us to reduce test costs whilst meeting our stringent quality demands when implementing our advanced IDDQ screening methodologies that include running hundred's of IDDQ strobe points, as well as offering us improved IDDQ data quality"
- Dialog Semiconductor:
 - "Combining precise current measurements and appropriate data processing ensures product reliability and eliminates the need for burn-in as reliability screen"
- TSMC and IBM:
 - "Precise current profiling of fuse burning current ensures reliability of reconfigured memories and avoids "walking wounded" entering the field"
- Sharp:


Ridgetop Europe

- "Enabled by a Q-Star IDDQ monitor, a die-to-die & test set-up independent DSM strategy based on Current Ratios was developed & successfully implemented in a production environment, yielding significant improvement of product quality and reliability".
- Reliability qualification of remote controllers

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

Remote controller

Battery lifetime – reliability assessment

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

45

Ridgetop

© 2014 - Ridgetop Group & Ridgetop Europe – all rights reserved – copying or distributing without written permission is strictly forbidden

Ridgetop Europe

Overview

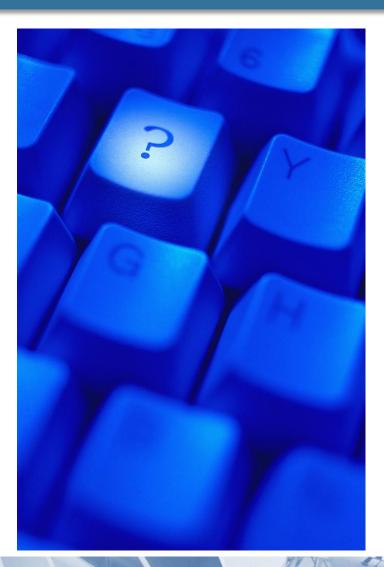
- Reliable Electronics
- Precise current measurements ?
 - Accurate Accuracy
 - Resolution
 - Repeatability
 - Understanding specifications
- Precise current measurements & reliability
 - Detecting failures
 - Burn-in replacement
- Cases

Ridgetop Europe

Conclusions

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

46


Ridgeto

Conclusions

- "Current" hides/reveals reliability related info.
- Precise measurements of both Static and Dynamic current behavior unlock the secrets and support easily identification of reliability risks at device – board – system level.
- Requires use/deployment of appropriate instrumentation, eventually combined with suitable data analysis strategies.

Ridgetop Europe Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu © 2014 - Ridgetop Group & Ridgetop Europe – all rights reserved – copying or distributing without written permission is strictly forbidden

Ridgetop Europe

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

- Slides and recording of the webinar will be available shortly via an e-mail from Ridgetop
- E-mail follow-up questions & comments to <u>hans.manhaeve@ridgetop.eu</u>
- Please fill out our brief feedback survey at <u>https://www.surveymonkey.com/s/JLRBLVB</u>

Thanks for your time and interest!

Ridgetop Europe

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

© 2014 - Ridgetop Group & Ridgetop Europe – all rights reserved – copying or distributing without written permission is strictly forbidden

49

Thank you!

Ridgetop Group, Inc.

3580 West Ina Road Tucson, AZ 85741

Ridgetop Europe

Lieven Bauwensstraat 20 | 8200 Brugge | Belgium | www.ridgetop.eu

© 2014 - Ridgetop Group & Ridgetop Europe – all rights reserved – copying or distributing without written permission is strictly forbidden

50