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The Model-based Avionic Prognostic Reasoner (MAPR) presented in this paper is an 

innovative solution for non-intrusively monitoring the state of health (SoH) and predicting 

the remaining useful life (RUL) of electronic and electromechanical assets by accessing and 

processing data obtained from a standard avionics data bus. To support Integrated Vehicle 

Health Monitoring (IVHM) initiatives, the solution being described here has been designed 

to be as non-intrusive as possible. An innovative, model-driven anomaly diagnostic and fault 

characterization system for electromechanical actuator (EMA) systems was developed to 

mitigate potentially catastrophic faults. EMA systems are used in a wide variety of aircraft 

applications to control critical components such as control surfaces, landing gear and thrust 

vector control. Failure in any one of these systems can compromise passenger safety, as well 

as mission success. A MIL-STD-1553 bus interface and monitor were designed to extract 

environmental (e.g., altitude, air speed, air density) and operational (i.e., response of system 

to a commanded change) data of a representative EMA system and to determine whether an 

anomaly is detected, and the corresponding severity. The MIL-STD-1553 bus was chosen as 

the test bed to develop this approach, due to its large installed base and availability of 

compatible development tools. Advanced and unique reasoning methodologies are applied to 

the extracted data sets to provide anomaly detection and fault classification on various fault 

modes and eventually yield SoH and RUL. In this paper we describe a data monitoring unit 

that will, in real time, identify, isolate, and characterize faults and establish their severity so 

that major performance problems can be alleviated. When built, this system will consist of a 

laptop with a Peripheral Component Interconnect (PCI) card slot that can accept multiple 

interfaces to the MAPR software package. The MAPR package will be designed to be 

adaptable for a large number of different platforms, for portability and for maximum input 

data type flexibility. This paper describes a ground-based prototype of the technology to 

show the efficacy of the method. 

I. Introduction and Background 

HE Next Generation Air Transportation System (NextGen) aims at making travel more efficient and speedy 

while maintaining or increasing safety. NASA’s Aviation Safety Program (AvSP)
1
 supports the NextGen by 

providing and supporting research on existing safety challenges such as increase in air traffic, introduction of new 

vehicle concepts, continued operation of legacy vehicles, increased reliance on automation, and increased operating 

complexity. Assurance of flight-critical systems, vehicle health assurance and prognostic algorithm design are 

among the top 10 technical challenges that AvSP supports.  
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 The ability to accurately and precisely predict the remaining useful life (RUL) of critical aircraft components and 

subsystems enhances aircraft safety by enabling decision making and failure mitigation. In addition, it can improve 

operational efficiency by facilitating condition-based maintenance (CBM) and reducing unscheduled maintenance. 

In pursuit of the goals outlined by AvSP, this paper presents a Model-based Avionic Prognostic Reasoner (MAPR), 

an innovative solution for non-intrusively monitoring the state of health (SoH) and RUL of electronic and 

electromechanical assets by accessing existing data obtained from a standard avionics data bus.  

 As the aviation industry evolves toward next-generation fly-by-wire vehicles, hydraulic actuators are being 

replaced with their electromechanical actuator (EMA) counterparts. By eliminating fluid leakage problems while 

reducing weight and enhancing vehicle control, the feasibility of EMAs in avionic applications has been established. 

However, due to the inherent nature of electronic components and systems to degrade and eventually fail, improved 

diagnostic and prognostic methods are required to maintain the all-electric aircraft at safe levels. An advanced and 

unique reasoning methodology in anomaly diagnostic and fault characterization system for EMA systems was 

developed to mitigate potentially catastrophic faults. EMA systems are used in a wide variety of aircraft applications 

to control critical components such as control surfaces, landing gear and thrust vector control. Failure in any one of 

these systems can compromise passenger safety as well as mission success.  

 A MIL-STD-1553 bus interface and monitor were designed to extract environmental (e.g., altitude, air speed, air 

density) and operational (i.e., response of system to a commanded change) data of a representative EMA system and 

to determine whether an anomaly is detected, and the corresponding severity. The MIL-STD-1553 bus was chosen 

as the test bed to develop this approach due to its large installed base, and availability of compatible development 

tools. Advanced and unique mathematical algorithms are applied to the extracted data sets to yield SoH and RUL.  

 MAPR also has the ability to redefine the physical property model variables based on anomalous events that 

reveal systems degradation. With the fault severity cataloged in a database on the analysis platform, the detected 

fault can be isolated and tracked over time to support off-board analysis and calculation of the RUL of the device 

under test (DUT).  

 Accurate RUL predictions and fault diagnostics for critical systems of next-generation aircraft are vital for 

proactive health management. The ability to predict impending failure before it occurs supports mitigation of the 

fault and taking corrective actions. In this paper we describe a data monitoring unit that will, in real time, identify, 

isolate, and characterize faults and establish their severity so that major performance problems can be alleviated. 

When built, this system will consist of a laptop with a Peripheral Component Interconnect (PCI) card slot that can 

accept multiple interfaces to the MAPR software package. The MAPR package will be designed to be adaptable for 

a large number of different platforms, for portability, and for maximum input data type flexibility.  

In previous research
2,3

, the authors designed a MIL-STD-1553 bus monitor and a MIL-STD-1553 bus controller 

to simulate an aircraft data bus, read the environmental (i.e., altitude) and operational (i.e., response of system) data 

of a system, and determine whether a fault is manifesting; and if true, determine the root cause and symptoms of the 

fault. This paper presents the continuation of that research, where the authors leverage Ridgetop’s EMA prognostics 

methodology to further develop the MAPR and describe a ground-based prototype of the technology to show the 

efficacy of this data analysis and fault classification method. 

II. A Model-driven Anomaly Diagnostic and Fault Characterization System 

The fundamental premise of our real-time MAPR is that an avionic system can be represented as a grey-box 

model with parameters that correspond to physical characteristics of the modeled system. For example, when 

applied to an EMA system, coefficients of resistance, inductance, and friction characterize the brushless DC 

(BLDC) motor that actuates the control surface. Since degradation of the system alters these parameters, system 

identification techniques such as Extended Kalman Filtering can be used to estimate system parameters and measure 

deviation from a healthy system. Presumably, parameter deviations can be analyzed and grouped to identify the 

damaged subsystem or component. Ideally, parameter drift can be trended to support prognostic measurements such 

as SoH and RUL. 

During early research, a proof-of-concept version of the MAPR was introduced that processed relatively short 

motion profiles in pseudo-real-time using LabVIEW modeling techniques to successfully detect and classify 

anomalous EMA behavior.
2
  

A. System Architecture 

Figure 4 illustrates the system-level design of our integrated real-time MAPR development environment. The 

proposed test network architecture is ideally suited for both hardware-in-the-loop (HIL) and model-in-the-loop 

(MIL) testing, where the fault-enabled EMA testbed is replaced with a high-fidelity MATLAB/Simulink model 
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correlated with the testbed, dramatically accelerating technology readiness and commercial introduction. Potentially, 

the testbed and model could co-simulate identical MIL-STD-1553 position commands and fault modes 

simultaneously while the MAPR observes their individual responses. 

 

Figure 1: Integrated real-time MAPR development environment 

The JSBSim tool was selected to produce realistic flight data for an advanced EMA testbed and modeling 

environment. JSBSim is an open-source flight dynamics model (FDM) that compiles and runs under many operating 

systems.
3
 An application programming interface (API) was developed to transfer JSBSim control surface commands 

and simulated environmental conditions experienced by the aircraft to a local bus controller module. The bus 

controller then fed the aircraft flight data onto the physical MIL-STD-1553 data bus in real time, where it is 

simultaneously consumed by the EMA testbed and/or model and monitored by the MAPR sensor.  

Once deployed, anomalous EMA events are detected by the MAPR and dispatched to a software analysis 

platform for further analysis and decision making. Ideally, the MAPR prototype would be capable of producing 

prognostics health data, such as actuator SoH and RUL measurements, in addition to detected anomaly events. 

B. Real-time Testbed Architecture 

Figure 2 illustrates the architecture of the real-time testbed being developed for MAPR anomaly detection and 

fault-to-failure progression (FFP) signature characterization. As shown in the graphic, a National Instruments single-

board Rio (NI-sbRio) platform will provide a single MIL-STD-1553 remote terminal (RT) with one subaddress (SA) 

for control surface position command data and another for the associated position feedback sensor data. The NI-

sbRio provides a common input/output (I/O) hardware interface for both HIL and MIL testing. 
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Figure 2: Real-time testbed architecture 

Aside from retrofitting our state-of-the-art EMA2000 prognostic-enabled testbed with a scaled-down unmanned 

aerial vehicle (UAV) actuator and control surface, as depicted in Figure 2, a key element in the proposed 

architecture is the addition of external sensors to acquire motor DC-Link and phase current signals, in addition to the 

control surface position feedback, in real time. The sensor data acquisition, which is synchronized in time, is 

retrieved by the MIL-STD-1553 bus controller and is thus available to the MAPR for continuous, real-time analysis. 

Furthermore, MIL-STD-1553 RT subaddressing, along with sbRio I/O expansion, supports extensibility of the 

multivariate data. For example, thermocouples and accelerometers can easily be added to the testbed to measure 

metal-oxide semiconductor field-effect transistor (MOSFET) device temperature and motor vibration, respectively, 

for improved anomaly detection and FDI resolution. 

The architectural diagram provided in Figure 3 identifies the power stages that comprise a typical servo drive 

(SD) subsystem, along with the electronic components most prone to aging and ultimately failure. A critical 

ingredient in the recipe of realizing an effective MAPR sensor capable of producing prognostic health data is a 

controlled aging methodology. Ridgetop plans to continue its productive collaboration with the NASA Ames 

Research Center (ARC) to improve component aging process control and apply the ARC’s aging results to its 

proven artificial aging techniques. 

Prior work conducted at the ARC revealed that applying thermal cycling overstress to MOSFET devices leads to 

thermomechanical stresses on the microelectronics due to mismatch of thermal expansion coefficients between 

different elements in the packaged device. Thermal runaway, latchup, and delayed or inhibited MOSFET switch 

turn-on were the prevalent failure modes observed during the experiment. By eliminating the traditional heat sink 

from the device and controlling device self-heating through various power cycle regimes, device output signals 

provide insight into the level of degradation during the aging process, as well as a precursor to failure for prognostic 

algorithm development.
7
 

It may not be feasible to use natural aging data for the purposes of developing prognostic technologies. Although 

all electronic devices are prone to failure, it could take thousands of service hours, or many years, for the mission-

critical applications of these devices to fail. Accelerated aging enables characterization of “run-to-failure” data in a 

manageable timeframe. The ultimate goal of our collaborative effort is to leverage the ARC accelerated MOSFET 

aging methodology to control the degradation of the MOSFET devices used in our MAPR testbed. Ideally, the 

MOSFET aging could be controlled to reasonable levels (e.g., degradation steps of 10-20% from 100% to 0%). The 

aged devices could be inserted into high- and/or low-side MOSFET socket(s) to characterize multivariate FFP 

signatures for singular, as well as compound, damage modes and produce effective diagnostic and prognostic MAPR 

algorithms. 
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Figure 3: Fault-enabled servo drive power stage topology  

C. Real-Time Model Architecture 

Figure 4 illustrates the initial application of the real-time modeling methodology to the integrated MAPR 

development environment; we call it the Real-time Modeling Factory (RMF). Note the common I/O interface 

provided by the NI-sbRio for both HIL and MIL testing. 

 

Figure 4: Real-time modeling architecture 
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The centerpiece of our real-time modeling architecture is the MathWorks xPC Target. Our real-time modeling 

flow begins in the MATLAB/Simulink environment, where the state-space EMA model is adapted for real-time 

execution on the xPC target. The Simulink Coder tool synthesizes the model into a C/C++ language representation, 

which is automatically compiled into object code for download from the host computer to the real-time target. 

The xPC Target host software includes flexible APIs to programmatically control the real-time model on the 

target system. Parameters can be tuned, faults injected, and signals monitored in real time via the API. A third-party 

LabVIEW-based tool, xPCLabDesk, is being evaluated for RMF host control functionality. If suitable for the RMF, 

xPCLabDesk would couple the powerful simulation environment offered by MATLAB/Simulink with LabVIEW’s 

rich graphical user interface (GUI) development environment to yield a compelling MAPR demonstration. 

Along with multi-core processor and FPGA options, the xPC target offers a rich set of I/O blocks to enable HIL 

and MIL testing. The RMF will use xPC target I/O to interface the real-time model with the NI-sbRio, which 

provides a common HIL/MIL gateway to the MIL-STD-1553 data bus. 

A critical architecture design process associated with targeting a complex model, like our high-fidelity EMA 

system, to a real-time xPC target is illustrated in Figure 5. That is, the model subsystems must be analyzed and 

partitioned based on simulation time step requirements, with the most demanding subsystems targeted at the FPGA 

module(s) and less demanding subsystems targeted at the processor core(s). Depending on model requirements, 

multi-core xPC target systems can be configured with multiple FPGA modules. 

 

 

Figure 5: Multi-rate EMA model architecture 

III. A Model-based Avionic Prognostic Reasoner (MAPR) 

The MAPR runs on a testbed comprising a MIL-STD-1553 bus monitor and a MIL-STD-1553 bus controller 

(see Figure 1). The controller simulates the aircraft data bus and the monitor, which reads in signals. The monitor 

has an open architecture that allows deployment and integration of our models. 

The ultimate goal of the MAPR is to non-intrusively detect anomalous behavior and predict the RUL of 

electronic and electromechanical assets. This starts with a model that will be used extensively to create datasets, 

starting with the nominal response. Fault classification will identify MOSFET failure, capacitance degradation, etc. 

In this paper, we focus on the implementation of anomaly detection and fault classification requirements.  

Finally, prognostics will be used for predicting an RUL value based on a state-of-health value derived from 

detected and classified faults.  

A. Modeling and Anomaly Detection 

The relationship between a classic dynamic motor model and the output data is illustrated in Figure 6. The 

classic motor model consists of a system of differential equations and model parameters including inductance, 

friction, inertia, torque constant, resistance, etc., among others, which are part of any generic motor system. The 

Simulink model provides the ability to manipulate model parameters (for simplicity referred to as a, b, c, d,…) and 

produce a response for position, velocity, current, and voltage.  
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Figure 6: Model parameters and data output 

The parameters in the classic dynamic motor model have been mapped to the Simulink model. Hence, changes to 

model parameters in the Simulink model correspond to changes in the classic motor model. The effects of changes 

to the model parameters in the Simulink model with respect to the response are being investigated, while keeping in 

mind that those model parameters are directly related to the classic dynamic motor model parameters.  

B. Model Development 

 An important component of the MAPR development environment is real-time modeling of mission-critical 

avionic systems like the EMA. Toward that end the RMF concept was introduced to build a strong foundation for 

robust prognostics technology development. Figure 4 illustrated the initial application of the RMF methodology to 

the integrated MAPR development environment. As our original BLDC motor model evolved to support the RMF, 

two primary engineering objectives have emerged: integration with a mechanical subsystem for control surface 

actuation, and transformation of the power subsystem for real-time modeling. 

 
Mechanical Model 

 Modeling of all the physical testbed components was successfully completed using the SolidWorks 3D CAD 

system, as shown in Figure 7. The rotary encoder wheel on the control surface hinge point of the Simulink model 

represents the high-resolution position sensor installed in the physical testbed . 

 The main body and control surface pieces are made from aluminum sheeting and assembled with machine 

screws, providing a lightweight and strong testbed. The control surface has one hardened steel shaft connected to the 

main body with one end bearing on each side for stability and low axial friction. 

 

Figure 7: Completed 3D CAD assembly of testbed 

 Conversion from the SolidWorks 3D CAD assembly to the Simulink environment was successful with all 

mechanical properties included, as shown in Figure 8. Each component in the testbed can now be included with 
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additional mechanical simulation blocks for use with the modeling environment in exercising the model and 

gathering test data.  

 

Figure 8: Converted 3D CAD to the Simulink environment 

Power Subsystem Model  

 Model subsystems must be analyzed and partitioned based on simulation time step requirements, with the most 

demanding subsystems targeted at the FPGA module(s) and less demanding subsystems targeted at the processor 

core(s). Depending on model requirements, multi-core xPC target systems can be configured with multiple FPGA 

modules. 

 Preliminary analysis of our EMA model topology revealed the need for an  FPGA for the BLDC motor power 

subsystem. Aside from converting all continuous and floating point blocks to discrete and fixed-point, respectively, 

the primary caveat associated with porting a Simulink model, like our BLDC motor, to a real-time FPGA target is 

that not all toolkits (e.g., SimPowerSystems) are supported. Fortunately, Simulink provides tools to help automate 

the conversion process. However, before using the conversion tools, we first had to replace the SimPowerSystems-

based subsystem, circled in the center of our BLDC motor model presented in Figure 9, with an equivalent state-

space representation.  

Development of the BLDC motor model has increased the capability for fault injection to accommodate 

degradation to any parameter. In order to efficiently control and generate fault-seeded simulations, we created a 

simulation environment, shown in Figure 10, which programmatically collects input parameters, and records 

simulation outputs. The simulation environment was created as a data generation tool, demonstrating the ability of 

the BLDC model to operate under a variety of fault conditions. The model currently supports multiple fault modes: 

two terminal failure modes and five modes of variable degradation, outlined in Table 1. 
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Figure 9: BLDC motor model  

 

Figure 10: MATLAB simulation environment for Ridgetop’s BLDC Motor Model 

 

 

 

 



 

American Institute of Aeronautics and Astronautics 
 

 

10 

Table 1: Fault-Enabled Model Components 

System 

Block 

Subsystem 

Block 
Model Parameter 

Nominal 

Value 
Min/Max System Reaction 

H-Bridge 

SMPS 

Output Filter Capacitor 288 µF 0-288 
1) Inverter Input 

Instability 

Output Filter ESR 0.05 ohms 0.05-1.0 2) Ripple Noise 

MOSFET High-Side Ron 0.2 ohms 0.2-2.0 3) Output Instability 

MOSFET Low-Side Ron 0.2 ohms 0.2-2.0 4) Output Instability 

Inverter 

Phase A Inverter High-Side On 

Resistance 
0.036 ohms 0.036-0.36 5) Position Tracking 

Multi-Phase MOSFET Short - On/Off 6) Position Tracking 

Multi-Phase MOSFET Open - On/Off 7) Position Tracking 

 

The following observations (as numbered in the System Reaction column in Table 1) were made from 

simulations performed on the model: 

1. Reductions to the SMPS output filter capacitor dramatically increase the startup time of the SMPS 24 Vdc 

output. This also limits the amount of impulse current that is available to the inverter subsystem.  

2. An increase in SMPS output filter equivalent series resistance (ESR) creates a larger ripple voltage on the 

24 Vdc SMPS output.  

3. Increases in High-Side MOSFET on resistance create an increased voltage, while reducing current output 

capability. These effects cause the SMPS output to become unstable.  

4. Similarly for the Low-Side MOSFET, increases in on resistance cause signal instability. 

5. Inverter High-Side MOSFET on resistance changes effect the inverter’s ability to output current, which 

directly effects the motor’s position. 

6. A terminal failure, such as a short or open, to the Inverter’s High or Low-side MOSFETs would remove the 

inverter’s ability to move current through a phase of the motor winding. A MOSFET short would cause a 

significant current draw on the system, and cause position instability.  

7. Similarly to 6, a MOSFET open would not allow current to move through the motor winding, and thus cause 

position instability.  

 Shown in Figure 11 is the simulation GUI. The Fault-Seeded BLDC Model Interface manipulates parameters in 

the simulation environment, and computes the system outputs of a Simulink model file.  
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Figure 11: Fault-Seeded BLDC Model Interface 

 The methodology and tools developed for fault-seeded generation are a key component to successfully analyzing 

system-level data for prognostic analysis. With the Faulted-Seeded BLDC Model Interface GUI, generating fault-

seeded simulations can be done efficiently and programmatically. By leveraging this method, data generation for 

analysis is expedited and a compound fault dictionary can be generated. 

C. Data Analysis 

 Analysis began with seven data sets produced from the Simulink model. This included one nominal data set, 

three data sets for low, medium, and high capacitance faults, and three data sets for low, medium, and high on-

resistance faults. We explored various approaches to analyzing the data including: auto-correlation technique, non-

linear regression, computation of intermediate values, k-means clustering, and gradient descent. Below we describe 

in more detail the gradient descent approach taken in this research work. 

Gradient Descent 

 During the initial evaluation of the data sets produced from the model with known seeded faults, it was 

hypothesized that an objective function could be used to identify the seeded fault. The objective function would 

need to incorporate both the nominal data set from the model produced under ideal conditions as well as the data set 

produced by a perturbation in one of the primary model parameters used for fault seeding. Numerically, this 

optimization would tend to a minima or maxima corresponding to the identification of the seeded fault. The initial 

hypothesis was further restricted to the point that a certain objective function measuring “a distance” between the 

nominal and fault-seeded data were minimized (i.e., tend to zero); this would identify the seeded fault qualitatively 

as low, medium, or high. With the objective function in place, various methods can be used to find the minima.  

 Gradient descent
6
 is a method for finding a minimum for an n dimensional function f. The method is based on an 

initial guess, gradient, direction, step, and stopping condition. Recall that the gradient is defined as the partial 

derivative of the function f with respect to each independent variable in each of the unit vectors in n space. The 

magnitude of the gradient is the square root of the sum of the square of the gradient in each of the unit vectors in n 

space. This approach is computationally more efficient than, for example, Newton’s method as it does not rely on 

the second derivative, which can increase the computational complexity of the algorithm from O(n) to O(n
2
). There 

are various methods in which to determine the initial guess, step, and stopping condition.  

 Our approach to gradient descent has been developed and is described in this section. This algorithm also seeks 

to find the true minima and was founded on the concept walking down a hill to locate the valley. To find the true 

valley you start by looking around and identifying the direction of steepest descent (gradient). Taking one step 

(select step size) in that direction you compare your current position with the previous position (obtain result). If the 

new position is better, take a longer step in the same direction. If the new position is worse, take a half step back and 

compare your current position with the previous two positions. This description maps well to the algorithm shown in 

Figure 12. 
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1: Decide initial guess 

2: While stopping condition is not met, 

3:    Calculate the gradient 

4:    Select a step size  

5:    Obtain the result 

6:    If result is better  

7:       Compute a larger step in same direction 

8:       Obtain result  

9:    Else   

10:       Compute a half step back  

11:       Compare new result with previous two results  

12:    End If 

13: End While 

Figure 12: Gradient Descent Analysis Methodology Procedure  

 

 One of the novelties of this approach is that the stopping condition is directly related to the size of the step. The 

step size will ultimately get smaller and smaller as you approach the true minima. This is in contrast to the 

traditional approach, which relies upon a stopping condition being the magnitude of the gradient less than some 

epsilon, ‖  ‖   . The results produced by this Multivariate Gradient Descent with Variable Stride Length are just 

as good if not better than the traditional approach.  

 The gradient descent approach has proven extremely useful as it has seeded the need to incorporate the data 

analysis while actively perturbing the model parameters. This methodology provides the basis for the first algorithm 

we have developed to detect and classify faults for output filter capacitance and on-resistance, described in this 

section. 

 The objective function to be minimized using our gradient descent was formulated in the following manner: 

Several intermediate values were computed. This includes the mean DC, frequency f, bandwidth B, and power P. 

These intermediate values are calculated for each of the phase currents and position producing 16 intermediate 

values for each of the 32 time windows. This is repeated for the nominal data set and all fault seeded data sets. Next, 

a difference is calculated between the first degradation level data set and the nominal data. This 32x16 matrix is the 

input to Principal Component Analysis (PCA), producing coefficients and variances for those coefficients 

identifying the components that contribute the most to the composition of the data. A total of 16 coefficients are 

produced from PCA and these are labeled ai in the following equation set representing the computation of the new 

values NVi. Each new value is the sum of the product of the PCA coefficients ai with the corresponding DC, f, B, and 

P values.  

 

NV1 = a1DCP1 + a2fP1 + a3BP1 + a4PP1 + … + a13DCIc1 + a14fIc1 + a15BIc1 + a16PIc1 

 

NV2 = a1DCP2 + a2fP2 + a3BP2 + a4PP2 + … + a13DCIc2 + a14fIc2 + a15BIc2 + a16PIc2 

. 

. 

. 

NV32 = a1DCP32 + a2fP32 + a3BP32 + a4PP32 + … + a13DCIc32 + a14fIc32 + a15BIc32 + a16PIc32 

 

 For each level of degradation in the fault, the 32 new values are calculated. It is then possible to compare the 

values in each cell of the NV vector over increasing levels of degradation. This methodology spawned the idea of a 

good times matrix, which is described in more detail in the next section (D), to help produce a fault curve for each of 

the fault types. 

 

D. Fault Classification Methodology and Results 

 Fault classification curves for output filter capacitance, on-resistance, and ESR have been created. These are 

shown in Figure 13, Figure 14, and Figure 15. The curves allow for the identification of the seeded fault as well as 

the value of the seeded fault to within an acceptable error. Each of the fault curves shows the seeded fault on the x 

axis and a computed distance from nominal on the y axis. The definition of the computed distance from nominal will 
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be explained in a later section. This method for fault classification will prove to be an excellent predictor for various 

fault modes injected into the model.  

 

Figure 13: Output Filter Capacitance Fault Curve 

 

 

Figure 14: On-resistance Fault Curve 

 



 

American Institute of Aeronautics and Astronautics 
 

 

14 

 

Figure 15: ESR Fault Curve 

 Each of the curves shows a relatively smooth shape. Some of the edges in the plots can be attributed to results 

from the model for fault conditions far away from nominal that are close to being outside the acceptable range for 

the model. However, it is possible to identify an equation of fit with a relatively small error term for the given fault 

curves. In addition, interpolation between the computed data points will also yield good results with small error, thus 

making it possible to guess with low error not only the fault, but the magnitude of the fault. 

 The curves are formulated in the following manner. Beginning with the raw data, the motion profile is divided 

into 32 time windows, 8 windows centered at each of corners of the response. Each time window is composed of 

4096 sample values. This is depicted in Figure 16 where the black vertical lines are used to show the eight time 

windows around corner 1, blue vertical lines are used to show the eight time windows around corner 2, green 

vertical lines are used to show the eight time windows around corner 3, and red vertical lines are used to show the 

eight time windows around corner 4. There is no overlap between the time windows in the first and second corners 

as well as between the third and fourth corners.  

 

Figure 16: Nominal response with eight 4K windows (4 left, 4 right) around each highlighted corner 

For each of the time windows, the following intermediate values are computed. 

 

 DC or mean 

 Standard deviation 

 Cube 

 Frequency 
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 Power 

 Left Half Power 

 Right Half Power  

 Bandwidth 

 The mean is calculated in the standard way,   
∑   
 
   

 
. Similarly, standard deviation is calculated as   √   

 √∑ (    )
  

   . The cube is calculated as   . Frequency is calculated using a Ridgetop-developed approach that is 

a hybrid of the classical discrete Fourier transform (DFT) calculation. Starting with DFT the peak is identified along 

with the computed point to the left and right of the peak. These two points that enclose the peak are used to identify 

a more accurate frequency and corresponding power. The left half power and right half power are computed from 

the known frequency and power. Bandwidth is the difference between the right half and left half power.  

 The calculation of the intermediate values for each of the time windows produces a 32x32 square matrix M. This 

matrix is produced for the nominal data and then produced for each seeded fault. Each of the matrices M is used to 

produce a single point in the fault curves shown in Figure 12, Figure 13, and Figure 14. The rows of M correspond 

to the time window that is row 1 is the first time window and row 32 is the last time window. The columns 

correspond to the phase currents and position. DC or mean make up the first three columns, where the DC or mean 

is calculated for each phase current. The next three columns correspond to the standard deviation for each phase 

current. This is repeated for the remaining intermediate values producing 24 columns. The final eight columns 

correspond to the calculation of the eight intermediate values for position.  

 Once the intermediate values have been calculated, the difference to the nominal matric Mnom is determined. This 

is the square root of the difference squared element by element of the fault-seeded matrix M and the nominal matrix 

Mnom; call it new matrix N. This difference is determined for each of the fault seeded simulations. These new 

matrices N are then ordered based on an increasing level of degradation.  

 Next, a “good times” matrix G is computed. The good times matrix is initialized to a 32 by 32 ones matrix. The 

assumption is that initially all intermediate values are good. Recall that the matrices N are ordered for increasing 

degradation. For each matrix N of increasing degradation, element ei,j is compared to the previous ei,j for a value that 

is greater than or equal to the previous value. If for levels of increasing degradation for a particular seeded fault, the 

intermediate value ei,j stays the same or increases, then element ei,j of the good times matrix G keeps the value of 1. 

If at any point the comparison yields a smaller value, then element ei,j of the good times matrix G goes to zero. This 

typically produces a sparse good times matrix G for each of the fault types.  

 The good times matrix is then used to produce a final values matrix V. The dimensions of this matrix are 

produced from the good times matrix G. The number of rows correspond to the number of ones in the good times 

matrix G. The number of columns corresponds to the number of fault-seeded matrices N for a particular fault type, 

plus an additional column used as a reference value. 

 For each 1 in the good times matrix Gi,j, a row in the final values matrix V is determined from the corresponding 

elements of the degraded matrices N. For example, assume that G1,1 in the good times matrix is a 1, then the first 

row of the final value matrix contains the N1,1 elements for all N matrices. The last value in the row is the reference 

value and is calculated as 1000 times the row i plus the column j. Again, the number of rows will correspond to the 

number of elements equal to 1 in the good times matrix G. Figure 17 is a plot of all the possible fault curves for on-

resistance. Again, each curve is produced from each row in the final values matrix V. While many methods can be 

used to select the fault curve that will be used as a basis for fault classification, the chosen method is relatively 

simple, and it is to look for the maximum difference value between the fault-seeded data and the nominal at the 

highest degradation level.  
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Figure 17: Plot of all possible fault curves for on-resistance fault type 

 To evaluate the effectiveness of the Ridgetop Classification Algorithm, 52 tests were completed with 4 

signatures each. This produced a total of 208 testing runs. Each run contained a single anomaly, either power supply 

output filter capacitance, ESR of power supply output filter capacitance, increases to RDS_on of the MOSFET, or 

friction of the three-phase motor. The results from the testing are shown in Figure 18.  

 Of the 208 testing runs, 52 anomalies and 155 no anomalies were correctly identified. We achieved 99.5% 

accuracy and only one false alarm was found. The false alarm is shown as the point with the circle around it in 

Figure 18.  

 

 

Figure 18: Results of fault classification 
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IV. Conclusions and Future Work 

 The MAPR real-time processing will allow for several critical evolutions in flight safety and provide IVHM and 

CBM support strategies. Flight safety can be improved by allowing the on-board flight computers to read from the 

MAPR and update their control envelope based on its evaluations, reducing damage propagation and increasing 

operational safety.  

 Scalability, extensibility, and testability are key elements of the MAPR design. Our innovative approach 

effectively decouples the passive prognostic reasoner from the target flight control system (e.g., actuator) and 

supports multiple avionic data bus interfaces, such as MIL-STD-1553 and ARINC 429, simplifying adoption, 

validation, integration, and support. Potentially, a single MAPR could monitor multiple flight control systems, 

optimizing overall sensor costs. 

Thus far, the anomaly detection and fault classification algorithms have been developed and validated solely 

with data provided from traditional modeling techniques and limited electromechanical fault modes. That said, 

preliminary results from traditional modeling have revealed an extremely high degree of effectiveness. As our 

algorithm methodology evolves with an expanding dictionary of actuator fault signatures, a comprehensive range of 

compound, as well as singular, damage modes will be supported. The FFP signatures will provide input into a 

prognostics analysis engine that will fortify the detection of anomalous actuator behavior with an accurate prediction 

of remaining service life.                   

Achieving our goal of advanced diagnostics and prognostics (ADP) of mission-critical avionic systems is 

contingent upon creating an integrated ADP development environment, complete with real-time command of control 

surface actuation and sensor feedback. Ridgetop’s patent-pending MAPR abstracts the information provided by the 

low-level physical sensors to provide a high-level virtual sensor that reports anomalous system behavior and overall 

system health in real time to interested end-users, including operations and maintenance, air traffic control, and 

pilots. 

A physical testbed that comprises a scaled version of the entire control surface actuation system commanded 

from a representative MIL-STD-1553 network is under construction at Ridgetop’s Power Prognostics Laboratory. In 

parallel to physical testbed construction, our integrated EMA system model will be ported to a real-time modeling 

environment to eliminate the simulation latency of traditional modeling techniques. The real-time model will be 

correlated with the physical testbed to provide the computing kernel of our virtual MAPR sensor. Ultimately, the 

MAPR sensor can be deployed on-board as a node on the aircraft data bus to provide real-time alerts of anomalous 

actuator behavior or off-board as part of a ground-based IVHM system that can monitor the playback of historical 

flight data to provide vehicle- or fleet-wide analysis of system health. 
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