

Intermittent Fault Detection in Circuit Boards and Connectors

Dr. Hans Manhaeve October 8, 2014

Agenda

- Interconnect Reliability Background
- SJ BIST Basics
- SJ BIST Operation
- SJ BIST Application
- **Summary & Conclusions**

Agenda

- Interconnect Reliability Background
- SJ BIST Basics
- SJ BIST Operation
- SJ BIST Application
- Summary & Conclusions

Interconnect Failure

- Interconnects are subject to
 - Manufacturing defects
 - Aging effects (electromigration)
 - Stress (thermal, electrical, chemical, mechanical, vibration)

Causes of Interconnect Failure

- Bad soldering process
- Bad PCB manufacturing process
- Weak cable
- Bad connectors
- Thermal Stress
 - Differences in Thermal Expansion Coefficients (TCE) of different materials cause differences in expansion/compression
 - → Heating / Cooling cycles
 - Changes in work load
 - Changes in ambient
 - Power-on / Power-off cycling
- Mechanical Stress
 - Shock Vibration Torque Bending
 - Mission Maintenance Storage conditions

Solder Joint Failure

- Solder joints are susceptible to mechanical failure leading to opens, shorts or intermittencies and affecting functional and electrical signal behavior
 - Primary Causes of Solder Joint Failure:
 - → Bad solder process
 - → low quality solder material
 - → Thermal stresses
 - → Physical Stress
 - → Missing Solder Ball
 - Leading to
 - → Increased Resistance
 - → Intermittent Signal
 - → Cracks and Fractures

Intermittent Faults

- An interconnect intermittent fault is an event that causes the interconnect resistance to increase for a predefined amount and last for a minimum time.
- Fault detection is linked to # of occurences
- Definition evolved:
 - From: R increase of $1K\Omega$ lasting at least 1μ s \rightarrow JEDEC 22-B111
 - To: R increase of 200Ω lasting at least 200ns
- Interconnect is classified as failing if subsequent to the occurence of the first event, nine more events are detected that occur within a period of time T2 that is less than or equal to 10% of the time to the occurance of the first event T1. (T2 <= 0.1*T1)

Reliability Manufacturing and Package Failure Criteria

- In manufacturing reliability and lifetime Qualification tests, a single instance of a high-resistance spike (a fault) is not considered a package failure.
- A package failure is typically defined as either:
 - High frequency of events
 - High count of events
- An event (a fault) is typically defined by the industry as a detected high-resistance spike of 200 to 300 ohms or more that lasts for 200 nanoseconds or longer.

Reliability Manufacturing and Package Failure Criteria

- High Frequency of Events Failure
 - In a typical lifetime test, the number of cycles (time) between the start of the test and the first detected high-resistance spike is recorded as time T1. A package is deemed to have failed when an additional nine events are detected in a period of time (T2) that is less than or equal to 10% of the T1 time period.
 - → This method of evaluation requires a minimum of 10 events for a package to be recorded as having failed.
- Multiple Count of Events Failure
 - In a typical lifetime test, an open is defined as two or more events that occur in the same cycle. A package is deemed to have failed when 15 opens occur.

BGA – PCB Relationship: Die, package, wiring, pins

Defects: Location of Cracks/Fractures

- Corner pins likely to fail first
 - High stress areas, and corners of the BGA package and die

Solder Balls, Cracks and Fractures

Mechanisms of Failure

- Fatigue fractures (cracks) are caused by thermo-mechanical stress/strain
- During periods of high stress, fractured bumps tend to momentarily open and cause intermittent faults of high resistance for periods of ns to μs
- Over time, contamination and oxidation films occur on the fractured faces: the effective contact area becomes smaller and smaller
- Transient opens can be detected by event detectors

Mechanics of Failure

HALT results - Pulled FPGA - Damaged Solder Balls

Fractures and Intermittency

Intermittent Failure caused by Fractured Solder Joint and Vibrational Stress

Defects: Fractures & Intermittency

Intermittent Failure caused by Fractured Solder Joint and Vibrational Stress

ridgetopgroup.com

Intermittent Faults

- Faults are intermittent: confirmed by CAVE, Auburn Univ.,
 German automobile manufacturer, BAE Systems and other firms
 - Occur during periods of increasing strain
 - Multiple occurrences per cycle
 - Industry standard: 200 ohms +, 200 ns +

Intermittencies

- With present technology, reported electronic system problems in the field cannot be duplicated at the service point or in the lab
- "Three/Four-letter" words (CND, NTF, RTOK)
 - Could Not Duplicate (CND)
 - No Trouble Found (NTF)
 - Retest OK (RTOK)
- 50 to 80% of these CND/NTF/RTOK problem categories are reported by service personnel.
- Major culprits Solder joint intermittencies and NBTI effects in deep submicron ICs

Techniques for Interconnect Verification

- X-Ray Laminography
- Analog Harmonic Test
- RF induction & Analog junction technique
- Boundary Scan
- SJ BIST
- Daisy chain of interconnects

Existing Test Methods

- Focus on Manufacturing Process
 - Boundary Scan (JTAG / IEEE 1149.1)
 - Optical / X-Ray Inspection
- Focus on Static Measurements
- Reliability Measurements Are Lacking
 - Reliability = Performance over Time
 - Implies field measurement & monitoring
 - Intermittencies develop <u>after</u> deployment

X-Ray Laminography

- + Typically 98% of all solder joints can be inspected
- + All pins, including power and ground
- No info on electrical properties, => cannot detect micro cracks
- Cannot be used for continuity checks

Analog Harmonic Test

- + Verifies electrical properties of the connection
- + Detects opens & marginal connections (10-20 Ohms)
- Requires time consuming learning phase
- Cannot diagnose highly parallel connection arrays, e.g. power/ground nets

RF induction & Analog junction technique

- + Makes use of the pin protection diodes that need to be biased
- + Detects opens
- Requires time consuming learning phase
- Cannot diagnose highly parallel connection arrays, e.g. power/ground nets

Boundary Scan

- + Makes use of logic interaction between connected functional pins
- + Detects Opens & Shorts
- Can only be used when the circuit is operating in test mode
- Cannot diagnose highly parallel connection arrays, e.g. power/ground nets
- No information on degradation

SJ BIST

- + Detects opens, shorts and intermittences
- + Runs concurrently
- + Detects degradation and serves CBM approaches
- Requires dedicated test pins
- Cannot diagnose highly parallel connection arrays, e.g. power/ground nets

Daisy chain of interconnects

- + Detects opens & shorts
- + Useful for assembly/soldering process qualification
- + Has some diagnosis capabilities
- + Useful for HALT testing
- Requires dedicated test pins
- Cannot diagnose highly parallel connection arrays, e.g. power/ground nets
- Requires hard wired connections between pins

Interconnect Daisy Chain

ridgetopgroup.com

Agenda

- Interconnect Reliability Background
- SJ BIST Basics
- SJ BIST Operation
- SJ BIST Application
- **Summary & Conclusions**

What is SJ BIST?

- SJ BIST = Solder Joint Built-in Self-Test
 - Original solution enabling the verification and validation of solder joint interconnect reliability
 - Originally developed for FPGA-BGA applications
 - Can be applied to validate the integrity and reliability of any type of interconnection

SJ BIST Objectives & Features

Objectives

- Detection of impending interconnect failures
- Unique in-situ testing in operating circuits
- Technology-independent
- Feature and Benefits
 - Detects ball fractures prior to catastrophic failure of circuit
 - Provides actionable maintenance data
 - Independently tested and verified
 - Endorsed by leading automotive and aerospace customers

SJ BIST Implementation

- SJ BIST runs concurrently with host circuit
- SJ BIST requires dedicated I/O

SJ BIST Implementation

- SJ BIST runs concurrently with host circuit
- SJ BIST requires dedicated I/0

SJ BIST Implementation

- SJ BIST runs concurrently with host circuit
- SJ BIST requires dedicated I/O

Agenda

- Interconnect Reliability Background
- SJ BIST Basics
- SJ BIST Operation
- SJ BIST Application
- Summary & Conclusions

ridgetopgroup.com

SJ BIST™ Operation

- Similar to a simple memory test: W0 R0; W1 R1
- Runs concurrently with host circuit
- Verilog/VHDL core (patent pending)
 - Each core tests two I/O pins
 - Pins are externally wired together
 - Optionally small capacitor connected to the two pins

ridgetopgroup.com

SJ BIST Concept

- Interconnect == Memory
 - Connection between two dedicated pins
- Storage element == Capacitance of interconnect
 - Intrinsic (parasitic) capacitance of wire
 - I/O input capacitance
 - Small add-on capacitance
- Test == Transfer Charge == Memory Test
 - Write 0's and 1's
 - Verify if 0's and 1's are correctly stored

SJ BIST Concept

SJ BIST Operation

Healthy Solder Joint

ridgetopgroup.com

SJ BIST Operation

Faulty Solder Joint

ridgetopgroup.com

SJ BIST Concept

Agenda

- Interconnect Reliability Background
- SJ BIST Basics
- SJ BIST Operation
- SJ BIST Application
- Summary & Conclusions

SJ BIST I/O

- Input (Control)
 - Clock, Enable & Reset
- Test Pins
 - 2 bidirectional I/O pins: TP0 & TP1
- Output (to host)
 - Failure Flags (fault was detected on TPO/TP1)
 - Active fault flags (fault is active on TP0/TP1 at the moment of interrogation of SJ BIST)
 - Failure counts (2 8-bit values related to number of faults detected on TPO and TP1 respectively)

Other SJ BIST Information

Flags:

- Permanent vs Intermittent fault
- Flags can be treated individually or combined in a global Pass/Fail flag
- Provide "occurence" information
- Event Counts
 - # of occurances of a permanent or intermittent fault during a given timeframe
 - Provide "severity" information
- Flags & Event counts are associated with each SJ BIST Test pin

ridgetopgroup.com

Testing On-chip Interconnect

Need for dedicated on-chip path between SJ BIST™ Observation pins

Testing Die to Substrate

= Interconnect path being tested

Testing Die to Board

ridgetopgroup.com

SJ BIST HALT for Process Qualification

Testing Cables

Testing Cables

48

SJ BIST Demonstration/Evaluation Kit

ridgetopgroup.com

Agenda

- Interconnect Reliability Background
- SJ BIST Basics
- SJ BIST Operation
- SJ BIST Application
- **Summary & Conclusions**

SJ BIST Summary

SJ BIST

- + Detects opens, shorts and intermittences
- + Runs concurrently
- + Detects degradation and serves CBM approaches
- + Serves Process Qualification
- + Serves On-line in-situ Monitoring
- + Serves a wide application range (Package Board connectors cables)
- + Addresses reliability aspects of interconnects
- Requires dedicated test pins

SJ BIST Summary

- Available as:
 - Verilog/VHDL core
 - Microcontroller code
- Requires dedicated I/O + capacitor
- Runs concurrently
- Interconnect reliability verification
 - Process qualification
 - Lifetime observation

Contact Information

Hans Manhaeve

Office: +32 50 319273

Hans.manhaeve@ridgetop.eu

Ridgetop Group, Inc.

3580 West Ina Rd. Tucson, AZ 85741

Questions?

 Slides and recording of the webinar will be available shortly via an e-mail from Ridgetop

 E-mail follow-up questions & comments to Hans Manhaeve: hans.manhaeve@ridgetopgroup.eu

Please fill out our brief feedback survey at: https://www.surveymonkey.com/s/PV8N9J8

Thanks for your time and interest!

Thank you!

Ridgetop Group, Inc.

3580 West Ina Road Tucson, AZ 85741

About Ridgetop Group, Inc.

- Incorporated in 2000, and headquartered in Tucson, AZ. Ridgetop Europe established in 2010 in Belgium.
- **Microelectronic Design and Test Solutions:**
 - SJ BIST™ Based Test Solutions
 - ProChek™ Semiconductor **Characterization System**
 - Q-Star Test™ Precision Current **Measurement Instruments**
 - PDKChek™ In-Situ Test Structures
 - ISO:9001/AS9100C-compliant Design and Integration Services
- Strong market position with commercial and government customers in USA, Canada, **Europe, and Asia**

Ridgetop Group Facilities in Tucson, AZ

Ridgetop Europe Facilities in Brugge, Belgium

Design Services

Ridgetop maintains a complete Cadence design flow, and has designed circuitry down to the 45 nm process node. Ridgetop also has a line of predesigned and characterized IP blocks that can be used to accelerate the time-to-market for your systems. Examples include precision bandgap references, op-amps, comparators, ADCs, DACs and test structures.

Our design services include:

- Analog/mixed-signal and gate array integrated circuits with varying process nodes of 0.5 µm down to 45 nm
- High-speed, high performance, high linearity ADC and DAC design
- Fuel Cell and Battery Management System components
- FPGA-based designs, from basic specification to gate level, with timing analysis and programming
- IP blocks of specialized functionality
- Modeling and simulation
- Completion of back-end design from existing EDIF/SPICE to GDSII layout
- Rescaling "legacy" designs to smaller process geometries
- Radiation-hardened/foundry-specific designs

Q-Star Test

- I_{DDQ} , I_{DDT} , I_{SSQ} and other precision current measurement instruments for characterization and test
- On-board modules and on-chip sensors
- Test and DFT consulting and training services
- 70 semiconductor companies and 700 instruments installed
- Developed by Ridgetop Europe

Q-Star Test Measurement Solutions

Static (Quiescent) Current Measurement Instruments (I_{DDQ}/I_{SSQ})

- Standard and advanced IDDQ tests
- Stand-by current measurements
- Power-down current measurements
- Bias current measurements
- Average current measurements
- Analog DC and low frequency current measurements

Dynamic Current Measurement Instruments (I_{DDT})

- Dynamic and transient (IDDT) current tests
- Power profiling of circuits and systems
- Active current consumption
- E-fuse programming validation
- ...

Why Ridgetop?

For more information visit:

www.ridgetopgroup.com