Testing and Design-for-Testability Solutions for 3D ICs The Hype, Myths, and Realities

Krishnendu Chakrabarty Department of Electrical and Computer Engineering Department of Computer Science Duke University

Outline

- Technology Overview
- Hype, Myths, and Reality
- 3D IC Test Challenges
 - What to test? When to test? How to test?

- Emerging Solutions
 - Recent advances
 - Some controversies

Stacking with Through-Silicon Vias (TSVs)

Traditional stacking with:

3D chip stacking with wire-bonds: Heterogeneous technologies Not-so-dense integration, Not-so-small footprint

New stacking technology:

Through-Silicon Vias (TSVs): Metal vias that provide interconnects from front-side to back-side through silicon substrate

Diameter	5 µm
Height	50 µm
Aspect ratio	10:1
Minimum pitch	10 µm

System-in-Package (SiP)

Applications

Memory-on-Logic (JEDEC Wide I/O DRAM)

- 4 channels (*a*-*c*)
- 4 x 128 bit = 512 bit I/O
- 4 x 4.25 Gbytes/s = 17 Gbytes/s bandwidth
- Up to 4 stacked dies (Rank 0-3)

3D-SIC

2.5D-SIC Package Rank 3 Rank 2 Rank 1 Rank 0 SI

Applications

Future applications:

- Logic-on-logic
- Multi-tower stacks (both logic-on-logic and memoryon-logic)

TSV Formation, Wafer Thinning

Difficult to process wafers thinned below 100 microns

- Mount wafers on temporary wafer handlers (carriers)
- Thinning and backside processing

Option 1: Mount IC wafer face-down on carrier, bond "face-up" (B2F)

Scalable solution, supports more stacked layers

Option 2: Bond wafer to 3D stack in "face-down" configuration (F2F)

- More interconnects between active device on two layers
- Number of stacked dies limited to 2

Fabrication of IC Stacks

Steps in B2F Bonding

Hype: Industry Trends in 3D Integration

3D-IC Reference Flow: CoWoS

TSV process for narrow pitch: 10µm

GLOBAL FOUNDRIES

20nm technology with TSVs

About to stack DRAM on Volta GPUs

Research in 10µmpitch micro-bumps €25M investment for in-house production of 3D ICs

Hype: Industry Trends in 3D Integration

3D-IC Reference Flow: CoWoS

TSV process for narrow pitch: 10µm

GLOBAL FOUNDRIES

20nm technology with TSVs

About to stack DRAM on Volta GPUs

Research in 10µmpitch micro-bumps €25M investment for in-house production of 3D ICs

Hype: EDA Support for 3D Flows

cādence

- Tools for 3D included in TSMC Reference Flow
- Validated on a memory-onlogic design with Wide-I/O DRAM

 Tools for 3D included in TSMC Reference Flow

SYNOPSYS®

 Collaborates with A*STAR IME to Optimize Through-Silicon-Interposer (TSI) Technology

3D ICs: Reality

- 3D stacking technology demonstrated on silicon (but limited)
 - Xilinx, TSMC, GlobalFoundries, AMD

[source: Globalfoundries]

- Cost remains ultimate challenge
- Efficient 3D IC ecosystem needed for high-volume manufacturing

3D ICs: Reality (AMD "Fiji")

AMIDA

4096-bit wide interface
 512 Gb/s Memory Bandwidth

4GB High-Bandwidth Memory

- Graphics Core Next Architecture
 - 64 Compute Units

TANK TANK

- 4096 Stream Processors
- 🖌 596 sq. mm. Engine

First high-volume interposer
 First Through Silicon Vias (TSVs) and μBumps in the graphics industry
 Most discrete dies (22) in a single package
 Total 1011 sq. mm.
 186k μBumps, 25k C4 bumps

Jeff Rearick, 3D Test Workshop, 2015

Reality: Need for 3D IC Ecosystem

Reality: Supply Chain Needed

From Two to Three (or More?) Test Insertions

Test Content, Test Delivery, Test Resource Optimization and Reuse (Cost Minimization)

3D Test Challenges

- How to test the interposer?
- Micro-bump probe access
 - Probe needles much larger than TSV/micro-bump size and pitch
- Probe card applies force (weight)
 - TSVs/microbumps have low fracture strength
- Post-bond access: No direct access to non-bottom dies
- New defects due to TSV manufacturing process

[IMEC]

TSV Defect

- How to test the TSVs? Pre-bond, post-bond
 - Underfill, pinhole defects, opens: pre-bond
 - Misalignment, mechanical/thermal stress: post-bond thermal effects

(IMEC, Belgium)

TSV Defects

- (a) Fault-free TSV
- (b) Resistive-open defect
- (c) Leakage defect

TSV Defects (Contd.)

Stress-induced defects

- Copper area
- Silicon area
- Overall area

Cu -	area	Si - area	Overall area
 Thermal mismatch (extrinsic stress) TSV extrusion Debonding Bump crack & delamination 	 Rapid grain growth (intrinsic stress) Void formation Void growth & coalescence Crack generation & propagation 	Cu-induced residual stress • Change of carrier mobility	Bump process- induced stress Plastic deformation & fracture in bump and soldering

G. Lee et al – 3DIC'12

Pre-Bond Testing of TSVs: Myth or Reality

- Some semiconductor companies say no!
 - Too fragile, too difficult to test pre-bond
 - Process people will fix the yield problem!
 - "We deal with much larger number of vias through DFM rules, and TSVs are at least an order of magnitude larger..."
- But...
 - TSV defects affect surrounding silicon!
 - So more testing of die logic needed
 - Micro-bump defects not addressed as easily by process fixes
 - Probing solutions on the horizon

IMEC – Cascade Microtech

[Marinissen et al, ITC'14]

Cascade Microtech's Probe Technology

- Pyramid Probes[®] Rocking Beam Interp.
- MEMS-type thin-film probe card
- Lithographically-defined probe tips

IMEC's 2.5D Test Chip 'Vesuvius-2.5D'

- Full four-bank JEDEC Wide-I/O interface (= 1,200 micro-bumps)
- Daisy-chains through micro-bumps

Demonstrated

- Successful probing with single-channel Wide-I/O probe card on Cascade Microtech CM300 probe station
- Limited probe marks on micro-bumps: Cu and Cu/Ni/Sn (after reflow)
- No measureable impact of probing on stacking yield
- 3D-COSTAR: Economic feasibility in single-site testing

NanoPierceTM TSV Contact Solution (FormFactor)

- Socket contacts
- Down to 20 µm array pitch
- Flexible film with many nanofibers

Probing with "TSV Matrices" (Duke Univ.)

(12) United States Patent Chakrabarty et al.

(54) METHOD AND ARCHITECTURE FOR PRE-BOND PROBING OF TSVS IN 3D STACKED INTEGRATED CIRCUITS

- (75) Inventors: Krishnendu Chakrabarty, Chapel Hill, NC (US); Brandon Noia, Durham, NC (US)
- (73) Assignee: Duke University, Durham, NC (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 392 days.

(10) Patent No.:(45) Date of Patent:

US 8,775,108 B2 Jul. 8, 2014

5,881,067	A *	3/1999	Narayanan et al 714/726
5,951,702	A *	9/1999	Lim et al 714/718
6,057,954	A *	5/2000	Parayanthal et al 359/248
6,182,256	B1 *	1/2001	Qureshi 714/726
6,252,448	B1 *	6/2001	Schober 327/259
7,739,568	B1 *	6/2010	Bertanzetti 714/729
7,793,180	B1 *	9/2010	Shrivastava 714/726
7,978,554	B2 *	7/2011	Kim et al 365/210.1
8,024,631	B1 *	9/2011	Bertanzetti 714/729
8,107,777	B2 *	1/2012	Farah 385/14
8,373,493	B2 *	2/2013	Chakrabarty et al 327/427
8,436,639	B2 *	5/2013	Goel 326/16
8,461,904	B2 *	6/2013	Kim et al 327/427
2002/0049927	A1*	4/2002	Yamamura et al 714/30
2002/0184584	A1*	12/2002	Taniguchi et al 714/726
2003/0218488	A1*	11/2003	Parulkar et al 327/218
2004/0119502	A1*	6/2004	Chandar et al 326/96

Noia and Chakrabarty, IEEE Trans.CAD, 2013

TSV Probing for Die Logic Testing (Duke Univ.)

(12) United States Patent Chakrabarty et al.

- (54) SCAN TEST OF DIE LOGIC IN 3D ICS USING TSV PROBING
- (71) Applicant: Duke University, Durham, NC (US)
- (72) Inventors: Krishnendu Chakrabarty, Chapel Hill, NC (US); Brandon Noia, Durham, NC (US)
- (73) Assignee: Duke University, Durham, NC (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 128 days.

- (10) Patent No.: US 8,782,479 B2
- (45) **Date of Patent:** Jul. 15, 2014
- (56) **References Cited**

U.S. PATENT DOCUMENTS

2011/0080185	A1*	4/2011	Wu et al 324/750.3
2012/0242367	A1*	9/2012	Goel 326/16
2012/0280231	A1*	11/2012	Ito et al 257/48
2013/0024737	A1*	1/2013	Marinissen et al 714/727
2013/0293255	A1*	11/2013	Wu et al 324/762.01

OTHER PUBLICATIONS

Chakrabarty and Noia, "Pre-Bond Probing of TSVs in 3D Stacked ICs," Test Conference (ITC), 2011 IEEE International, Sep. 20-22, 2011.

* cited by examiner

Noia et al., IEEE Trans. VLSI Systems, 2015

Non-Invasive Pre-Bond TSV Test

(Deutsch and Chakrabarty, TCAD 2014, ITC 2015)

$$C = 60 \text{ fF}$$

$$R_0 = 0 \dots 3 \text{ k}\Omega$$

$$R_L = 0 \dots 10 \text{ k}\Omega$$

- a) Fault-free case: lumped capacitor C = 60 fF ($R_{TSV} < 1 \ \Omega \rightarrow \text{neglect } R_{TSV}$)
- b) Resistive open fault: $R_0 = 0 \dots 3 \text{ k}\Omega$ at the location x
- c) Leakage fault: $R_L = 0 \dots 10 \text{ k}\Omega$

Main idea: parametric test for R_O and R_L

Ring Oscillator Configuration

Ring Oscillator Configuration

- Measure difference $\Delta T = T_1 T_2$ to reduce inaccuracy due to random process variations
- ΔT sensitive to defects in TSVs
 - $-\Delta T \clubsuit$ if resistive open
 - $-\Delta T^{\uparrow}$ if leakage

Using Duty Cycle for Pre-Bond TSV Test

Regression Model Based on Artificial Neural Networks

- Objective: determine <u>fault type and size</u> based on measurements
- Use artificial neural networks (ANNs):
 - + Efficient for complex systems with large number of inputs
 - Require sufficient number of samples for training

Generic ANN architecture:

Input layer

Regression Model Based on ANN

- Class-net: classification network to determine fault type
- *G_L*-net: function-fitting network to determine *G_L*
- *R*₀-net: function-fitting network to determine *R*₀
- Inputs: {T_{osc}, T_{osc}, D, D_b} measured at K voltage levels

Regression Model: Simulation Results

- Two sets of training and test data (10,000 MC samples each)
- $K = 8 (V_{dd} = 0.85 \dots 1.2V)$
- G_L from 0 (fault-free) to 450 µS (strong leakage)
- R_0 from 0 (fault-free) to 5000 Ω (strong resistive open)

Evaluation of Class-net

Evaluation steps:

- 1. Train Class-net using training sample set
- 2. Predict fault class using Class-net for evaluation sample set
- 3. Compare output class with actual (target) class for each sample

Evaluation of Class-net

Confusion matrix: Target Class class_leak class_dual class_open 9524 58 0 **Output Class** class_leak 33.3% 0.2% 0.0% 37 9818 135 class_open 0.1% 34.4% 0.5% $\mathbf{0}$ 124 8865 class_dual 0.0% 31.0% 0.4%

CorrectpredictionMisprediction

 \rightarrow Number of mispredictions is relatively small

Evaluation of G_L-net and R_o-net

T_{osc} alone good enough as input parameter?

- Comparison with models using only oscillation period
- All models trained using same training data set

$$K \times \{T_{osc}, T_{osc,b}, D, D_b\} \xrightarrow{\rightarrow} G_L \text{ net } \xrightarrow{\rightarrow} G_L$$

$$K \times \{T_{osc}, T_{osc,b}, D, D_b\} \xrightarrow{\rightarrow} R_0 \text{ net } \xrightarrow{\rightarrow} R_0$$

$$K \times \{T_{osc}, T_{osc,b}, D, D_b\} \xrightarrow{\rightarrow} R_0 \text{ net } \xrightarrow{\rightarrow} R_0$$

Performance evaluation metric: mean squared error (MSE)

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_{p,i} - y_{t,i})^2$$

- $y_{p,i}$ target value
- $y_{t,i}$ predicted value

Evaluation of G_L-net

Error histograms of G_L -net and G_L -net_r at $G_L = 100 \ \mu$ S.

 \rightarrow G_L-net more accurate (less spread around zero error)

Evaluation of G_L-net

• MSE of G_L -net and G_L -net_r for different values of G_L .

 \rightarrow using D as additional input increases diagnosis accuracy for weak leakage (<100 µS)

Do we need to test at multiple voltage levels?

 \rightarrow improved diagnosis accuracy using multiple voltage levels

Conclusions

- 3D fabrication and assembly steps (TSVs, alignment, bonding, thinning, etc.) lead to unique defects
- Known test methods can be utilized (extended) for some problems
 - Post-bond test access, IEEE P1838
- Out-of-the-box thinking needed for other test challenges
 - Pre-bond testing (KGD, TSV testing, die logic testing)
 - Cost modeling (when and what to test)

Traffic Lights

	KGD, Pre-bond test, Probing	Thermal-aware testing?
1	Post-bond test	Power integrity?
?	optimization, standards	Clock-domain crossings?
	2.5D: interposer, microbumps, RDL	BIST?
		Repair?
	Test flows	Test compression?
1	Defect	
	understanding, test content	Debug?

Target TSVs in Production Test and Volume Diagnostics?

TSV Redundancy?

Yield Learning for a 3D Stack?

