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Abstract—Accidents involving trains have been attributed to 
degraded track and rolling stock. Detection of anomalies that 
indicate degraded condition is critical. In this paper we present 
results of an experiment using a sensor system mounted on one of 
the 110 boxcars on a train on a high-tonnage loop test track. The 
sensor was a microelectromechanical systems (MEMS) triaxial 
accelerometer module mounted on the hubs of the wheels of the 
boxcar. Sensor data were wirelessly transmitted to a collection 
gateway hub mounted inside the boxcar. The purpose of the 
experiment was to evaluate the feasibility of using a rotating 
triaxial accelerometer-based system designed to be mounted 
inside of a helicopter gearbox, and to use the system to detect 
anomalies in railroad tracks and rolling stock as well as 
anomalies of bearings, rotating shafts and gears. The results 
confirm it is feasible to identify, locate, and characterize such 
anomalies. 
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I. INTRODUCTION 
Sensors are at the heart of effective diagnostic 

measurement systems, and flexibility for integration into 
diverse platforms is required. Wireless internet technology, 
including Internet of Things (IoT), opens new avenues of 
supporting rigorous remote testing, diagnostic and prognostic 
systems. In a comprehensive prognostics and health 
management (PHM) system, sensor measurements are critical 
to providing the observability necessary to support the 
monitoring of spatially separated systems. Wireless technology 
supports selection of individual or multiple sensor input 
streams through a gateway collection hub where signal 
processing can be applied to the data stream to extract 
anomalies or degraded performance attributes; wireless 
technology enables use of unique IP addresses that can be 
interrogated for sensor measurements on an ongoing, near real-
time basis; and standard wireless protocols can be used to feed 
sensor information from deep inside an enclosure such as a 
gearbox. 

Collecting and processing measurement data is not 
straightforward because of many factors, including but not 
limited to noisiness of data from a sensor mounted on a boxcar 

axle, and the volume of digital data from high-bit resolution 
analog-to-digital data converters (ADCs). Wireless technology 
facilitates the transmission of digital data to a data-collection 
hub where a microprocessor transforms three-dimensional bit 
data into scalar data. 

II. SETUP: TEST TRAIN AND TEST TRACK 

A. Mounting: Sensor System 

A microelectromechanical systems (MEMS) based sensor 
module was mounted concentrically on the wheel hubs for each 
end of a boxcar axle of a train with 36-inch diameter wheels 
(see Fig. 1). The RotoSense™ module incorporates the MEMS 
sensor, wireless transmission, the PC board, receiving and 
storing data and data processing algorithms. 

The MEMS device that was selected was configured for 3-
axis coverage, 28 mV/g sensitivity, and a sample rate of 160 
Hz. Analog data were digitized by three 16-bit ADC 
converters, stored in a local NVRAM, and then transmitted to a 
wireless network data-collection hub. This provides the net-
centric bridge from low-power wireless mesh standard IEEE 
802.11.4 protocol to the high bandwidth wired IEEE 802.3 
standard, allowing connection to wireless switches and routers 
(see Fig. 2). The range of the wireless mesh transmission 
between collection hubs is approximately 10 meters/32 feet. 
The design includes the ability to collect data from a global 
positioning system (GPS) and store all the data remotely. 

 



  

Fig. 1. RotoSense module mounted on the hub of a boxcar axle. 

 

Fig. 2. Sentinel Gateway wireless data-collection hub. 

B. Test Train and Track 

The test train was about 1.3 miles in length, and comprised 
three locomotives and 110 boxcars. It was run on a high-
tonnage loop (HTL) test track (see specs in Table I) for 
research under heavy axle-loads to test track-component 
reliability, wear, and fatigue. The test track is at the 
Transportation Technology Center in Colorado and is divided 
into test sections that generally correspond to tangents, spirals, 
curves, and turnouts that are populated with features and test 
sections (see Fig. 3). Examples of features are shown in Fig. 4, 
Fig. 5, Fig. 6, and Fig. 7.  

After two laps, the train was auto-controlled to run at 40 
mph: 15 four-minute laps of 2.67 miles each. On the fourth 
day, the train completed 132 laps. More than 14 billion digital 
bits were generated. The 16-bit outputs of each of the three 
ADCs were split into two 8-bit nibbles and converted into two 
scalar values. Subsequent analysis and evaluation indicates that 
because of the noisiness of the data, it would be sufficient to 
use only the upper nibble. 

 

TABLE I.  FEATURES OF THE HTL TEST TRACK 

Test Track Feature 
# - Description # - Description # - Description 

1 – lubricator 2 – steel bridge 3 – crib ties 

4 – 405 turnout, frog 5 – thermite welds 6 – rail temperature 
test 

7 – rail performance 
test 8 – concrete bridge 9 – LTM tests 

10 – machine vision 11 – fiber optic 
cable 

 

 

 

Fig. 3. Top view of the HTL test railway. 

 

Fig. 4. Turnout and frog. 

 
Fig. 5. Steel bridge. 

 

 

 

 



 
Fig. 6. Concrete bridges. 

 
Fig. 7. Crib ties (top); concrete bridges (bottom). 

III. DATA ANALYSIS 

A. Goal and Objectives of the Analysis 

The goal of the analysis of the collected data was to prove 
the efficacy of RotoSense to detect high-force events (HFEs) 
that can be associated with features of interest (anomalies) on 
railroad tracks. HFEs that are not associated with known 
features can then be subjected to directed, focused inspection 
and investigation to discover damage requiring monitoring 
and/or maintenance.  

The objectives of the data analysis are summarized as 
follows: (1) determine where in the data the train completes the 
two-lap test conditioning run (TCR); (2) determine a virtual 
origin for each lap of data to which HFEs can be referenced; 
(3) verify the speed of the train, the track length (a lap), and the 
distance traveled per sample; (4) select a threshold or 
thresholds to differentiate between HFEs and noise; (5) select a 
suitable number of laps of data to analyze; (6) create HFE 
patterns; (7) use pattern matching to associate HFE patterns to 
features such as those listed in Table I; (8) select pattern 
matches that exhibit an unambiguous relationship between an 
HFE and a test track (TT) feature; and (9) document the 
results. Fig. 8 is a block diagram of the analysis of sensor data. 

B. Initial Train Movement 

Fig. 9 is a plot of sensor data in the x-direction before and 
after the train begins to move. The pre-movement values for x, 
y, and z were calculated: x = 31,488; y = 32,768; and z = 

32,768. These values were used to transform the sensor data to 
plus and minus values (see Fig. 10) to facilitate transforming 
the data into vectors. 

 

Fig. 8. Sensor, data collection, and post-processing diagram. 

 

Fig. 9. Sensor data before and after train movement. 

 

Fig. 10. Sensor data as the train comes to constant speed. 

C. Train at Speed: Noise Suppression 

After transforming the data into vectors using (1) and (2), 
various levels of noise suppression were used to condition the 
vector data. For example, Fig. 11 shows the result of using a 
noise margin (NM) of 25,000.1  
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1 Value of the digital bits of the sampled data.  
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D. Data Binning Based on Length of a Train Car 

We concluded that we needed to bin the data because of the 
physical construction of boxcars: especially with respect to the 
use of two trucks per car, two axles per truck, and lack of 
cushioning between axles, between the axles and the trucks, 
and between the trucks and the bed of a boxcar (see Fig. 12).  

 A force experienced by either wheel of a leading axle of 
a truck is transmitted to a sensor mounted on the hub of 
the trailing axle of the trailing truck.  

 A track feature that causes a high-force event (HFE) 
results in as many as eight events being detected by the 
sensor. 

 

Fig. 11. XY vectors after noise suppression 

 

Fig. 12. RotoSense sensor is mounted on the wheel of trailing axle of the 
trailing truck. 

Although it is also likely that the mechanical coupling of 
boxcars causes transmission of HFEs from multiple boxcars, 
no attempt was made to characterize that effect. 

Boxcars have lengths that vary from 50 feet to over 60 feet, 
with typical lengths of 58.5 to 60.5 feet, which led us to divide 
the 2.7 mile test track into 240 segments (bins) of 59.4 feet in 
length [1][2]. The result is summarized in Table II. 

TABLE II.  TEST TRACK SEGMENTS: SPECIFICATIONS 

TT Length Time per Lap Time per 
Segment 

Samples per 
Segment 

14,256 feet 240 s 1 s 160 

E. Data Analysis: Binned Data Method 

Fig. 13 is an example of binned data for all 240 segments 
after suppressing all data using NM = 25,000. The plotted bin 
counts and pattern matching results are shown in Fig. 14, Fig. 
15, and Fig. 16. Table III tabulates the TT segments, the 
corresponding TT IDs, the track features, and whether the 
feature was detected. 

 

Fig. 13. XY bin counts after noise suppressed. 

TABLE III.  TEST TRACK: SECTIONS, ID, FEATURE, AND STATUS 

Track 
Sections 

Track 
ID 

Track Feature Detected 

1 – 3 S1 Lubricator  

4 – 5  S2   

5 – 26  
30 – 40 
42 – 46  

S3 
S3 
S3 

Repair/overlay welds Yes 

Concrete bridges Yes 

Concrete bridges Yes 

63 – 66 S4 Steel bridges  

67 – 69 S5 Bridge deflection  

70 – 73 S6 Steel bridges  

74 – 92 S7 Rail performance  

93 – 97 S8 Fiber optic cable  

98 – 108 S9 405 turnout and frog Yes 

109 – 117 S23 405 turnout and frog Yes 

118 – 125 S24 Lubricator  

126 – 163 S25 TPO, tie & fastener Yes 

164 – 170 S26   

171 – 175 S27 Lubricator  

176 – 180 S28 Turnout – foundation Yes 

 

 



Track 
Sections 

Track 
ID 

Track Feature Detected 

181 – 193 S29 LTM tests  

194 – 198 S30   

199 – 208  S31 
FRA: rail-seat deterioration 

Thermite welds 
Yes 

209 – 212 S32   

213 – 225 S33 Crib ties Yes 

226 – 229 S34   

230 – 240 S35 407 turnout Yes 

 

 

Fig. 14. XY bin counts and pattern matching. 

 

Fig. 15. Z bin counts and pattern matching. 

 

Fig. 16. XY and Z bin counts and common pattern matching. 

IV. BINNING AND PATTERN-MATCHING RESULTS 
The results of pattern matching using binned data are seen 

in Fig. 17. The eight circled counts were matched to 10 track 
features/anomalies as listed in Fig. 18 and tabulated in Table 
III. In spite of the noisiness of the data, and the likelihood of 
“jitter” in the data, the results are excellent. We met our goal: 
“The goal of the analysis of the collected data was to prove the 
efficacy of RotoSense to detect high-force events (HFEs) that 
can be associated with features of interest (anomalies) on 
railroad tracks.”  

 

Fig. 17. Composite bin counts and pattern matching. 

 
Fig. 18. Track features (anomalies) matched to binned data. 

V. IMPROVED FILTERING 
An important objective of the data analysis was to show 

that even without GPS, the captured RotoSense data could be 
used to identify and locate significant railway 
features/anomalies such as turnouts. Examination and 

 

 

 

 



comparison of Fig. 17, Fig. 18, and Table III provides evidence 
the objective is met; however, the data are noisy. 

A. Particle Filtering 

The physical structure of the boxcar on which RotoSense 
was mounted to the wheel hubs results in the detection of a 
multiplicity of anomalies. Processing of signals from all wheel 
hubs can help pinpoint the sources of anomalies such as 
cracked rails or wheels, broken welds, or other worn 
components. The HFEs that are detected during the time it 
takes the boxcar to traverse a point on the track can be 
averaged: All HFEs that occur in a track segment can be 
classified as caused by a single feature. 

B. FilteringResults 

For four laps, a single HFE location was detected (see Fig. 
19); after 13 laps a total of five HFE locations were detected – 
there was no discernible change in the amplitude of the average 
HFE at that location (Fig. 20); and after 20 laps, there were six 
locations (see Fig. 21). 

 

Fig. 19. Single HFE location is detected in four laps of 240 segments. 

 

Fig. 20. Five HFE locations are detected in 13 laps of 240 segments. 

 

Fig. 21. Six HFE locations are detected in 20 laps of 240 segments. 

VI. PHM MODELING: PREDICTIVE 
Advanced prognostics in condition-based data (CBD) systems 
uses methods such the following: 

 Detect the onset of degradation, and use a predictive 
model to predict a future time of failure. 

 Monitor the degraded unit and measure the rate of 
change in degradation, use the rate to adjust a predictive 
model, and use the adjusted predictive model to predict 
a new future time of failure. 

As railways degrade, increasing degradation is likely to be 
manifested as an increasing force experienced by the wheels of 
the train cars. Therefore there are at least two candidates for 
fault-to-failure progression (FFP) signatures: increase in the 
number of HFEs and increase in the HFE magnitude as 
degradation increases. 

The predictive algorithms process both linear and nonlinear 
signature data: the algorithms use Kalman-like filtering 
methods; the algorithms are not computationally intensive; and 
the algorithms are fast and accurate: 

 Converges to within 25% of true end of life (TEOL) 
with an average of more than 80% remaining functional 
life. 

 Converges to within 10% of TEOL with an average of 
more than 70% remaining functional life. 

 Converges to within 5% of TEOL with an average of 
more than 50% remaining functional life. 

 Produces in near real time: 
o estimates of remaining useful life (RUL) 
o estimates of state of health (SoH) 
o estimates of prognostic horizon (PH) 

 

 

 

 

 



VII. RECOMMENDATIONS 
During analysis, the following were noted: 

 The sensitivity of the sensor can benefit from 
calibrating to the train speed. 

 The sampling rate of the sensor assembly should be 
increased to at least 14 kHz to detect narrower gaps. At 
160 samples per second and a train speed of 40 mph, 
the train will travel 704 inches per second, which means 
if it is desired to reliably detect a one-inch gap, the 
sensor needs to sample at least once every 0.5 inch. 

VIII. SUMMARY AND CONCLUSIONS 
The sampling rate of the sensor assembly should be 

increased to at least 14 kHz to detect narrower gaps. At 160 
samples per second and a train speed of 40 mph, the train will 
travel 704 inches per second. For a 0.5 inch gap in the rail, one 
sample per 0.5 inch is desirableSummary and Conclusions 

In this paper we presented the results of a test configuration 
using a sensor system mounted on one of the 110 boxcars on a 
train on a high-tonnage loop test track..  

The purpose of the experiment was to evaluate the 
feasibility of using the system to detect anomalies in railroad 
tracks and rolling stock. The results confirm it is feasible to 
detect, identify, locate, and characterize such anomalies. 

 Ten locations (out of 14) were detected. 

 Both binning and particle-based methods of 
conditioning data were used. 

 Two fault-to-failure progression signature candidates 
are identified. 

 A predictive processor using extended Kalman-like 
filtering (EKF) already exists and has proven to work 
on more than a dozen different devices and units. 

 Further work will include adjusting RotoSense for 
increased dynamic range and accuracy, as well as 
interfacing to downstream digital signal processing as 
part of a more comprehensive analysis system. 
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