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Abstract
1
— 

Anomaly diagnostics and fault classification with 

prognostics is an active research topic, and real-time 

detection of anomalies and their classification has remained 

a critical challenge to be overcome. We developed an 

innovative, model-driven anomaly diagnostic and fault 

characterization system for electromechanical actuator 

(EMA) systems to mitigate catastrophic failures. The 

efficacy of the Model-based Avionic Prognostic Reasoner 

(MAPR) approach has been proven in real time using test 

data acquired from a MIL-STD-1553 testbed. Receiver 

operating characteristic (ROC) curves are generated as a 

result of this study to show the tradeoff between sensitivity 

and specificity. Results of model optimization and fault 

classification are also presented. This real-time processing 

will enable enhancements in flight safety and condition-

based maintenance (CBM). Once this system is completely 

mature, flight safety will be improved by allowing the on-

board flight computers to read from the MAPR and update 

their control envelope based on its evaluations of the 

hardware health, reducing damage propagation, decreasing 

maintenance time, and increasing operational safety.  
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1. INTRODUCTION 

For space-bound and other mission-critical flight operations, 

failure in the field is not an option. With millions of dollars 

invested in satellites, rockets, and spacecraft, the expense of 

such failures can be costly at best and catastrophic at worst. 

Vital to successful operation of these craft is the no-fault 

performance of critical electronics and the ability to 

constantly monitor the health of these systems.  
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Ridgetop designed a MIL-STD-1553 bus monitor and a 

MIL-STD-1553 bus controller to simulate an aircraft data 

bus, read the environmental (i.e., altitude) and operational 

(i.e., response of system) data of a system, and determine 

whether a fault is manifesting; and if true, determine the 

root cause and symptoms of the fault. Once an anomaly is 

detected, the Model-based Avionic Prognostic Reasoner 

(MAPR) solves a user-outlined state-space model, 

symbolically, using a Gauss-Newton [17] optimization 

method and the information from the MIL-STD-1553 bus. 

This algorithm outputs a list of best-fitting parameters to 

match the command to the actual performance. Then rules 

are programmed in, based on results from principal 

component analysis (PCA) [13]. These rules determine both 

fault mode and the severity of that fault. The rules can 

distinguish multiple failure modes, such as mechanical jam 

and MOSFET failure.  

The anomaly analysis approach presented in this paper has 

foundations in model-based analysis. Model-based analysis 

uses physics knowledge of the system to design models to 

process and evaluate the current data. These approaches 

include residual-based [4] [7], multiple models [5], 

decoupling [15] [6], and hypotheses [1]. In contrast, dta-

driven approaches rely mainly on observation of system 

data, including data mining [14] [10] [2] [8], expert system 

[11] [3] [9] [12], and other methods. In this paper we 

present model-based analysis with a proposed health 

distance and grey-box model optimization algorithm. We 

also consider the support vector machine (SVM) approach, 

which has a particular strength on representing boundaries 

of varying state of health (SoH) measurements, and PCA to 

see the relationship between multiple variables using 

eigenvalue decomposition. 

The advanced Model-based Avionic Prognostic Reasoner 

(MAPR) described in this paper features a passive 

connection to common avionic data buses. Aircraft 

operators and control staff will have visibility of the health 

of critical flight control systems and components. Possible 

applications areas transcend a broad array of commercial 

segments such as the aerospace and automotive industries. 
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Figure 1: RTWEC motor model 

 

The rest of this paper is organized as follows: In section 2, 

we explain the Model-based Avionic Prognostic Reasoner 

(MAPR) with model formulation and dynamic linked 

libraries. Section 3 explains anomaly detection by 

comparing the actual and commanded position with 

performance metrics. Section 4 provides model optimization 

with defined structure and shows our algorithm control 

GUI. Principal component visualization of MAPR results 

are presented in section 5. Section 6, concludes the paper.  

2. MODEL-BASED AVIONIC PROGNOSTIC 

REASONER (MAPR) 

Ridgetop developed the Model-based Avionic Prognostic 

Reasoner (MAPR) that runs on a testbed comprising a MIL-

STD-1553 bus monitor and a MIL-STD-1553 bus 

controller. The controller simulates the aircraft data bus and 

the monitor, which reads in signals. The monitor has an 

open architecture that allows deployment and integration of 

our models. 

Ridgetop had previously developed a, model-driven 

anomaly diagnostic and fault characterization system for 

electromechanical actuator (EMA) systems to mitigate 

catastrophic failures: the EMA2000 suitcase testbed [16]. A 

data file containing the fault-testing results from the 

EMA2000 was added to the MIL-STD-1553 testbed to 

simulate the 1553 data from an airplane. These data consist 

of eight columns of 313 rows of numbers representing the 

actual and commanded position of the EMA2000 servo 

motor. While it currently does not gather the dynamic flight 

data from a 1553 bus, it will result in the development of a 

portable, demonstrable and flight-test-capable tool that can 

make a strong case for this technology. 

Trapezoids with amplitude were used to be a scaled match 

of our existing EMA test bed motion profiles. These data are 

easily logged in a comma-separated volume that is portable 

to several different modeling environments. 

2.1 Model Formulation 

The system model had to evolve to lower the effective 

runtime without sacrificing control of critical parameters. 

Therefore we built a reconfigurable state-space system 

model. To make sure that the MAPR system is 

developed with future usability in mind, the model was 

given a position to move to and the output was returned 

to the caller. The model now allows the hardware bus 

controller to send messages, the bus monitor to receive 

and log them, software to generate numeric data as a 

trajectory profile, and for the model to run that 

command. The state-space model is developed in Real-

Time Workshop® Embedded Coder™ (RTWEC), shown 

in Figure 1. 

2.2 Dynamic Link Libraries (DLLs) 

Ridgetop’s vision in this project was to create highly 

detailed actuator models in software and then build a 

dynamic link library (DLL). That DLL was deployed to an 

embedded system that supports the Windows DLL 

functions. Creating the DLL required type casting, runtime 

analysis, and solver configuration. The DLL of the model 

was then added to the bus monitor (BM) module, enabling 

data to be received via the 1553 bus. The data are modeled 

in a point-by-point system architecture; when each point 

simulation is finished, the plot is updated. 

The bus controller (BC) acts as the agent that sends data 

around the bus in hexadecimal “words.” The controller can 

be configured to send and receive “messages” from 30 

remote terminals (RT). The instructions in those messages 

are ordered by a “subaddress,” which allows for certain 

instructions to be filtered easily by the RT. For the initial 

setup a few unique words were sents from the bus controller 

to the remote terminal. 

The RT reads in words from the bus and has adjustable 

filters to allow for the full control of data coming in, and to 
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automate responses. RT is different from the bus monitor 

(BM) mode because RT devices send responses. In the case 

of the MAPR, the device must respond with the results of its 

calculation. 

The DLL is set up and controlled in software to check its 

validity and final runtime. Ridgetop created a simple user 

interface to control the library with position and torque 

inputs. However, the feedback controller design has been 

left out of this simple motor check program. Notice in 

Figure 2 that the x-axis is in milliseconds. The simulation 

time has been set to 2 times the maximum theoretical rate of 

50 Hz that the 1553 bus can run after adhering to the 

Nyquist rate.  

 

Figure 2: RTWEC DLL result 

The support vector machine (SVM) [16] is used to classify 

different groups of data. As two groups of data points, 

which represent repeated samples of two parameters, begin 

to move away from each other, an error is occurring (Figure 

3). This SVM is also intended to classify data that are not 

associated with either group, like an outlier or anomaly. The 

rules that define the conditions for an outlier define the fault 

type in the system. 

 

Figure 3: Support vector machine classifying two 

parameters 

3. ANOMALY DETECTION 

The first step in the algorithm is to compare the actual (D1) 

and commanded (D2) position for anomaly detection. We 

present the current data analysis based on the principle that 

normal system responses can be tested so that they are 

measurably different. The difference between a normal 

signal and an anomalous signal is called the Health 

Distance™. These “signals” at the time of analysis are not 

in the time domain.  

Anomaly detection is calculated with D2, relative to D1. 

First, all data are categorized into   pieces and the sum of 

all the dot products is equal to that of the dot product over 

the entire array (equation 1): 

        


 212121 , DDDDDD     (1) 

Now an angle is introduced to represent the difference 

between the two arrays: 
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    (2) 

2/0    

A returned value of 0 would indicate that the two signals are 

identical; a score of π/2 indicates that there are no 

similarities at all. The implementation of this process, in the 

time domain, results in large fluctuations in the angle of 

difference between two signals.  

This portion of the code also uses the information available 

to calculate the instantaneous load that the actuator must 

drive. That result will weigh into the decision on whether to 

continue analysis, because it will show whether a fault is 

present or just a large load variation. 
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3.1 Performance Metrics 

The false negative rate is the percentage of abnormal flows 

incorrectly classified as normal. True negative rate is the 

percentage of the normal flows that are correctly classified 

as normal. False positive rate is the percentage of normal 

flows incorrectly classified as abnormal. When the 

abnormal event is detected (positive), it is not a real 

abnormal event (false):  

      

(3) 

The true positive rate showed in experiment results is the 

percentage of abnormal flows correctly classified as 

abnormal. When the abnormal event is detected (positive), 

the abnormal event is a real abnormal event (true). Failure 

detection situations are classified in Table 1. 

       (4) 

Table 1: Classification of Failure Detection Situations 

 Real 

Abnormal Normal 

Detected Abnormal TruePositive FalsePositive 

Normal FalseNegative TrueNegative 

To show the tradeoff between sensitivity and specificity of 

our algorithm, we provide a partial ROC curve, Figure 4, for 

the anomaly detection algorithm.  

 

Figure 4: Receiver operating characteristic curve for 

anomaly detection 

The lack of any points between 0 and 1 on the ROC curve is 

due to 0 false positives at thresholds below 99% matching 

and not enough resolution between 99 and 100. The one 

point in the upper right is when a 100% threshold is applied, 

and no signal would pass as healthy in this case. It is 

encouraging to see that the false positive rate stays at 0 for a 

number of true positive values. At this point no judgment 

can be made regarding performance over the 99%. 

4. MODEL OPTIMIZATION 

Grey-box Gauss-Newton algorithms allow for the 

optimization of a model with defined structure, while 

imposing strict conditions on the variables that can be 

adjusted for a minimization of the error between the inputs 

and outputs of that model. An understanding of any system's 

dynamics can be represented using ordinary differential 

equations (ODE) with unknown parameters. Grey-box 

model equations specify the mathematical structure of the 

model explicitly, including couplings between parameters 

and known parameter values. Grey-box modeling is useful 

when the relationships between variables, constraints on 

model behavior, or explicit equations representing system 

dynamics are known.  

A grey-box model consists of a combination of a 

mechanistic (first principle) model and an empirical (black-

box) model. The form is based on the ordinary differential 

equation: 

)),(,,( uxfuxfx EMFP        (5) 

which contains first principle equations FPf
 which describe 

the interaction of the model states x, inputs u and the 

outputs of an empirical model EMf
. Such models are usually 

derived from conservation laws and balance equations but 

are, without exception, reduced to lumped models of low 

order. In our approach, the general partial differential 

equation (PDE) including empirical term: 

),()()( uTFuBTA
t

T





        (6) 

is considered. Here )(..,tT  denotes the state variable at 

position x in some spatial geometry   and at time t, ),( txu  

denotes the input. For all t, )(..,tT  is assumed to belong to a 

Hilbert space ; A  is a linear operator )(: ADA  

where )(AD  is the domain of A ; B  denotes the input 

operator and F  represents nonlinear terms and model 

mismatch. The system is separated in two parts: 
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Figure 5: Grey-box algorithm control GUI 
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),( uTFq   

where the nonlinear function ),( uTF  is viewed as the 

(known or unknown) empirical part of the model. 

A dynamic motor model can be represented by the system 

shown in Figure 6. 

 

Figure 6: Motion dynamics representation for a motor  

To set up the grey-box model, we derive the equations for 

the motion of the system shown in the following: 

1.  Rearrange and collect terms  

2.  Normalize  

3.  Add additional states  

4.  Write in State-Space Form ==> 
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Once the system has been formatted as above, the actual 

system hardware parameters can be filled in to define the 

known parameters. Then Ridgetop’s algorithm candidate 

can calculate the parameters that fit real data. 

Assuming that the first step of the algorithm process 

determines that a fault exists, two signals (the actual and 

commanded position of an actuator) are written to a file 

where they can be accessed. The file with the input and 

output data is specified by the user via the grey-box 

algorithm control interface shown in Figure 5. 
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Figure 7: Close-up of grey-box optimization results 

 

Figure 7 shows the response of the “initial guess” in green. 

The initial guess is rather far from the desired response and 

the red line is the final simulated response after the 

parameter estimation has found a suitable solution. The 

recorded “actual” response is the pink line and the following 

error is in blue. The plot shows that the grey-box algorithm 

was able to match the desired response. 

The resulting parameters of the grey-box method and 

parameter value solver appear in the user interface. Each 

cell of the matrix is turned into an equation, each with one 

unknown, and a simple parameter change solver routine is 

used to extract the value of the unknowns. 

5. FAULT CLASSIFICATION 

The fault classification was completed by writing the 

parameters of the grey-box solver to a file then using 

software to plot those values over time. Figure 8 shows a 

repetition in the D-matrix (purple) value, which is showing 

negative energy escaping the system, so an external force is 

being applied other than the command signal. 

 

Figure 8: Graphical representation of MAPR values through a repeating fault 
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As the fault repeats we can examine the values of the system 

and describe the relationship between all the parameters 

when a fault is present. For example, Figure 9 shows the 

relationship between k, b1 and b2 of the model. Notice the 

cluster in the upper right of the plot; the assumption is that it 

corresponds to a particular fault mode. 

 

Figure 9: Principal component visualization of MAPR 

results 

The PCA approach is an excellent research instrument as it 

allows us to see the relationship between multiple variables. 

New rules for a fault mode must still be programmed in, but 

the conditions can be determined by running failure data 

through the MAPR and plotting the results in the PCA 

approach. We also added a fault table to track all the faults 

detected during the operation of the MAPR. In future 

development, we plan to combine this fault table with the 

“Estimated Values of Unknown Variables.” This data will 

be input to Ridgetop’s Sentinel Network™ platform for 

MAPR to track these values for an extended period of time. 

6. CONCLUSION 

We have presented that MAPR shows the efficacy of our 

approach in real time using test data acquired from a MIL-

STD-1553 testbed. The result from ROC shows a very low 

false positive rate and high true positive rate. In our 

approach, the grey-box model allows us to optimize a model 

with defined structure, while imposing strict conditions on 

the variables. Fault classifications with the grey-box solver 

have explained in principal component visualization of 

MAPR. We expect the advanced MAPR described in this 

paper to become a very important embedded prognostic 

reasoner with a passive connection to common avionic data 

buses. The MAPR real-time processing will allow for 

several critical evolutions in flight safety and provide IVHM 

and CBM support strategies. Flight safety can be improved 

by allowing the on-board flight computers to read from the 

MAPR and update their control envelope based on its 

evaluations, reducing damage propagation and increasing 

operational safety. We will continue research into aging and 

providing degradation data sets to lend new insights into 

failure modes. Ridgetop’s Sentinel Network software is a 

ground-based application that provides an easy-to-

understand fusion of parameters and required maintenance, 

so maintenance personnel can have an extra angle of insight 

into the systems for which they are they are responsible.  
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