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Abstract—The current state of the art in electronic 

prognostic health management systems does not fully 

support detection, collection, and remediation of real-time 

faults. As a result, knowledge has not been captured from an 

actual platform failure mechanism. Thus, point-of-failure 

feedback cannot be applied by system designers or operators 

to improve lifecycle weak links in replacement platforms, or 

to strengthen effectiveness of mission-critical platforms. Our 

innovation makes it possible to extract and analyze the 

power system’s eigenvalues, which are related to the 

intrinsic frequencies of the power system that determine 

correlations between extracted features and state of health 

(SoH). In-situ electronic prognostics for power systems are 

crucial for attaining a sound theoretical basis of health 

status. To provide correlation information such as state of 

health (SOH) using pattern analysis with real-time data from 

a non-intrusive smart power sensor, Ridgetop researched 

using data-driven modeling with a proposed health distance 

and Support Vector Machines (SVMs) with signatures in a 

standard IEEE 1451-enabled smart power sensor. Results of 

this study indicate that a fault pattern analysis methodology 

overcomes certain disadvantages of the standard failure 

modes and effects analysis (FMEA) approach, which does 

not account for the contribution of unobserved failure to a 

degradation trajectory. The efficacy of the proposed pattern 

analysis approach is illustrated with test results showing 

critical distinction in pattern analysis and test data acquired 

from a real-time IEEE 1451-enabled smart power sensor 

testbed, and monitored via a testbed with appropriate 

instrumentation. 
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1. INTRODUCTION 

Fault detection and analysis, coupled with effective 

monitoring in mission-critical system environments, 

comprise a challenging research problem due to growth in 

scale [22] and complexity of applications, the changes in 

resource configuration [23], and the variety of services 

being offered and deployed. These capabilities maximize 

system effectiveness in the presence of anomalies and are 

defined as health management. Health management 

technologies have been considered critical for detection and 

prediction of impending system faults, initiating fault 

mitigation, and providing valuable information to facilitate 

proactive logistics planning and fleet-operation decision 

processes [8]. 

The pattern analysis approach presented in this paper has 

foundations in both model-based and model-free analysis. In 

short, model-based pattern analysis uses prior knowledge of 

the system to develop mathematical models to process and 

evaluate the current data. It includes residual-based [15] [6], 

multiple models [11], decoupling [1] [18], and hypotheses 

[16]. Model-free approaches, also called data-driven 

modeling in this paper, rely mainly on observation data 

without a priori knowledge about the system, and include 

data mining [20] [2] [21], expert system [10] [12] [3], and 

other methods. In this paper we present data-driven 

modeling with a proposed health distance and signatures in a 

standard IEEE 1451-enabled smart power sensor. We also 

consider one data mining method, the Support Vector 

Machine (SVM) approach, which has a particular strength to 

represent boundaries of varying SoH measurements. We 

then discuss hybrid pattern analysis combining our data-

driven analysis as an initial pattern detector in a real-time 

system and model-based analysis as an advanced pattern 

detector.  

The rest of this paper is organized as follows: In section 2, 

we explain a real-time IEEE 1451-enabled smart power 

sensor testbed from which data will be acquired in real time. 

Section 3 explains the concept of mean time between 

failures (MTBF) to increase the understanding of 

prognostics. Section 4 classifies pattern analysis as two 

approaches with explanation and examples to distinguish the 

difference and help define concepts used in the following 
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section. Section 5 presents our data-driven analysis 

development process, and section 6 shows the result, 

explaining how to apply our data-driven analysis with 

testing results showing critical distinction in pattern analysis. 

The opportunity of hybrid pattern analysis is discussed in 

section 7. Finally, in section 8, we conclude the paper. 

2. SMART POWER SENSOR  

Non-intrusive monitoring of electronic power systems’ SoH 

can be facilitated by examining the power system response 

to an impulse load change and extracting the characteristic 

frequencies of this response. The proposed smart sensor 

technology, which is based on the extraction and analysis of 

these eigenvalues, has wide applicability to electronic power 

systems, including SMPS and electromechanical actuator 

(EMA) servo drives. A block diagram of the sensor, with 

implementation of the IEEE 1451.4 interface standard, is 

shown in Figure 1.  

 

Figure 1 – Programmable IEEE 1451 power sensor 

architecture  

The embedded 400 MHz MPC5200 Freescale processor and 

Spartan 3 Xilinx FPGA easily satisfy the data acquisition 

and signal processing needs of our smart power sensor and 

provide a solid foundation for migration to a single-board 

solution or system-on-chip (SoC) implementation.  

The default measurement mode and transducer output of the 

smart sensor is the power system SoH. Represented as a fuel 

gauge in the diagram, the analog transducer output indicates 

the RUL of the entire system, taking into account the SoH of 

all individual system components, including the SMPS 

output filter capacitor, feedback amplifier, PWM controller, 

etc. The analog output signal is set to a maximum value 

when the sensor detects that the power system is 100% 

healthy and a minimal value when the system has completely 

failed or is 0% healthy. 

Flow*To minimize heat dissipation in the static load resistor 

and allow reduction in power rating, and ultimately size, the 

smart power sensor provides switching control of the static 

load as well as the impulse load. The oscilloscope waveform 

capture provided in Figure 2 illustrates the load control 

timing. The static load resistor is enabled first for 4 

milliseconds (ms). Midway through the static load period, or 

2 ms after static load is enabled, the impulse load is enabled 

for 10 microseconds (µs). 

 

Figure 2 – Load control timing  

A block diagram of the advanced load control is provided in 

Figure 3. Load control functionality has incrementally 

evolved from a simple hardware switch with an off-board 

load resistor to more sophisticated programmatic digital 

control logic. Along with safety benefits, like preventing 

burn injuries to the user, the advanced load control allows 

programmatic load insertion for on-line power system health 

monitoring. Furthermore, the load resistors can easily be 

changed to adapt the sensor to the target power supply.  

 

Figure 3 – Advanced load control block diagram 

Typical power supply specifications to consider when sizing 

the load resistors are total output power of the supply and 

the combined static plus impulse load required to elicit a 

measurable ringing response. For example a 1 Ω resistor on 

a 5 V 20A SMPS, like that employed in the RD1000-1, 

represents a 25% load. This could easily be increased to a 

50% load by using a 0.5 Ω resistor, or decreased to 12.5% 

load using a 2 Ω resistor, as is needed by the specific 

application. 

Another possibility allowed by the replaceable resistors is to 

add other types of loads. These loads could be capacitive or 

inductive, or with only slightly more complexity could be 

introduced as ramp loads rather than the step load currently 

used. 
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Another important feature of the load control board design is 

signal conditioning support. Due to the voltage input 

limitations of the data acquisition system used in the smart 

power sensor, it may be necessary to attenuate the input 

voltage. That is, the input voltage range of the sbRio is 

±10 V. Therefore, the user must be able to appropriately 

scale target power supply voltages greater than 10 V. 

A simple voltage divider circuit, using 0.1% precision 

resistors, provides the necessary input voltage scaling. 

Calibration constants like input voltage attenuation and lead 

resistance compensation are defined in the Reserved Space 

of the sensor’s TEDS memory, along with the programmable 

transducer mode. The schematic of the load control board 

illustrated in Figure 4 details the implementation of the 

signal conditioning and advanced load control circuitry. 

 

Figure 4 – Advanced load control board schematic 

As seen in the schematic, the inputs to the load control board 

are from three sources. These are the logic input signals, a 

24 V input to the voltage regulator, and the input from the 

supply under test. 

The logic inputs, V_I and V_S, are the impulse and static 

load control signals, respectively. These are amplified using 

a non-inverting gate driver to drive the MOSFETs that 

control the signal path of the load resistors. Power for the 

gate drive is supplied from the 12 V voltage regulator 

attached to the 24 V input of the load board (lower left in 

the schematic). The supply under test is then connected to 

the two loads in parallel fashion. When switched on, the 

MOSFETs close the circuit that inserts the load resistors 

across the power supply’s output. This in turn causes the 

ringing response, which is subsequently measured at the 

output of the load board’s signal conditioning circuit. 

3. THE FAILURE OF MTBF  

In 1995, a cornerstone of reliability was called into question. 

Mean time between failures (MTBF) is considered the 

“useful life” of a device, excluding the early failure and 

wear-out periods as shown in the reliability or “bathtub” 

curve. The aeronautical industry found use of MTBF 

questionable because of its inaccuracy when applied to real 

systems and the nature of the culture it engenders. Because it 

does not take into account component dependencies, MTBF 

can overestimate reliability. Some estimates have set MTBF 

accuracy for component failure rates at only 40%. The 

difficulty in identifying and correcting MTBF has led to 

adoption of an “acceptable” level of failures. This 

corruption of reliability removes the drive to eliminate the 

root cause and take corrective action. As a result, NASA and 

other organizations have embraced prognostics. 

4. MODEL-BASED AND MODEL-FREE  

To achieve prognostics using smart power sensor in 

electronic power systems, including SMPS and EMA servo 

drives with acceptable level of failures explained in previous 

sections, we classify those approaches that we can detect 

fault: Model-based and Model-free (data-driven). 

Model-based pattern analysis for fault detection uses prior 

knowledge of the system to develop mathematical models 

that can be used as indications to analyze the current status. 

One representative method is residual-based model [15] [6] 

which makes a mathematical model by knowing the input 

and the output of the system to be used to compare the 

actual output with those nominal behaviors produced by the 

model and therefore residuals are formed. This approach 

requires two steps to detect faults. It first needs to produce 

inconsistencies, also called residuals, between the real and 

projected behavior to reflect the potential faults of the 

system. A decision rule for analysis is then selected. Another 

example that does not rely on the residual for the detection 

of faults is multiple models (MM) [11] that use multiple 

filters in parallel to provide better performance in 

management of problems with an unknown structure or 

parameter but without structural or parametric changes. 

Other model-based methods are found in quantitative model-

based methods [19], decoupling methods [1] [18], statistical 

methods [16]. 

Model-free pattern analysis methods rely mainly on the 

availability of the amount of historical data without a priori 

knowledge about the system. In this approach, there are 

various ways in that data can be processed and presented as 

a priori knowledge for detecting process malfunctions. One 

of the methods is expert systems found in Tirifa’s hybrid 

system [13] utilizing fuzzy logic and signed directed graphs 

(SDG) to perform qualitative simulation and generate if-then 

rules to be evaluated by an expert system using fuzzy logic 

information. Other expert system examples are found in 

[10], [12], and [3]. Another major method in model-free is 

quantitative information analysis using statistical methods 

such as data mining, one of the most active research fields, 

which can automatically produce succinct and precise 

detection models from large amounts of data. Data mining 
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techniques such as support vector machines (SVM) [20] [2] 

[21] divide a set of binary-labeled training data with a 

maximal margin hyperlane for classification to map 

nonlinearly the input vector into a high dimensional feature 

space where the data can be linearly classified. Data mining 

has been developed with a variety of algorithms concerned 

with pattern detection, associations, changes, and 

statistically significant structures and events in data. Other 

model-free methods are neural network [4] [17] [14] and 

trend analysis [5] [7] [9]. 

In this paper, we are initially interested in model-free 

analysis methods, which do not require an accurate 

mathematical model of the process and make it possible to 

detect faults in real time by using the frequency spectrum 

and data mining based on data collection of both normal and 

faulty data.  

5. DATA-DRIVEN ANALYSIS 

The singular assumption made in the data-driven analysis 

development process is that a power supply’s response to a 

changing load will adjust with its health. First, one needs to 

understand what a normal or healthy response is. Data 

collected from the test setup (shown in Figure 5) illustrates a 

healthy response of the power supply regulating to 5 V. 

 

Figure 5 – Healthy system response 

This response is ideal since the time in which the device is 

out of regulation lasts approximately 1/10 of a second and 

the fluctuation is only 1/10 of a volt. Less healthy systems 

stay out of regulation longer and their voltages fluctuate 

comparable to the variation illustrated in Figure 6, for 

example. Also notice that the voltage fluctuation has 

increased and the time required for the power supply to re-

enter regulation has increased. A performance like this 

would indicate that the power supply was beginning to suffer 

from aging, and a computed RUL, along with supporting 

data, would be displayed to a decision-maker. 

 

Figure 6 – Increased voltage fluctuation and increased 

time to re-enter regulation 

Difficulty in detecting the decreasing health of a power 

supply arises when compound failure mechanisms manifest 

simultaneously. The characteristics of one failure mode may 

compensate for the characteristics of another. If or when the 

power supply has a plurality of degradation mechanisms, 

such as a diminished output capacitance and amplifier gain, 

the two could mask all obvious visible signs of degradation. 

A self-imposed requirement of accurately predicting RUL at 

all times requires the implementation of pattern analysis.  

We present the current approach based on the principle that 

unhealthy system responses can be tested so that they are 

measurably different. The difference between a healthy 

signal (D1) and an unhealthy signal (D2) is called the Health 

Distance™. To be clear, these “signals” at the time of 

analysis are not in the time domain. This is discussed in 

further detail in this section. 

Health Distance is calculated with D2, relative to a known 

healthy signal, D1. First, all data is categorized into   

pieces and the sum of all the dot products is equal to that of 

the dot product over the entire array: 

        


 212121 , DDDDDD     (1) 

Now an angle is introduced to represent the difference 

between the two arrays: 

 

















 

21

211

21 cos,
DD

DD
DD

    (2) 

2/0    

A returned value of 0 would indicate that the two signals are 

identical; a score of π/2 indicates that there are no 

similarities at all. The implementation of this process, in the 

time domain, results in large fluctuations in the angle of 
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difference between two signals. Consequently, a variation is 

employed using LabVIEW; the difference constitutes a 

statistical distribution of the integral of a signal’s frequency 

spectrum created and labeled: 

 



1

0

n

nmm DDD





                     (3) 

6. APPLYING DATA-DRIVEN ANALYSIS  

The information in the frequency transform lends itself more 

readily to our data-driven analysis algorithm. The 

fluctuations in the frequency spectrum are not only a natural 

function of several environmental conditions (e.g., 

temperature and vibration) but are also indicative of the 

system’s SoH. 

The first step in the signal processing is to remove the DC 

offset in the signal to allow for removal of zero frequency 

data from the frequency spectrum. The equation for this is 

straightforward: 21 VVV DC 
 where 2V

 is a time domain 

signal, but its average value is 0. This corresponds to the AC 

coupling of the signal and eliminates the low frequency 

components that are functions of the Fourier transform. 

After this manipulation, the next step is to generate a 

histogram from the integral of the frequency spectrum. A 

distribution is needed due to the natural variation in the 

signal. The advantage of this method is best described with 

actual data in the following example; note the displays in 

Figure 7. 

 

 

Figure 7 – Time domain signal (l) and results of histogram 

transform (r) 

The preprocessed time domain signal is on the left and its 

generated histogram of integral values from the frequency 

spectrum is on the right. The natural variation in the output 

of every signal leaves the time domain signals (l) nearly 

indistinguishable. However, after collecting enough data to 

generate the histogram (r) the difference is more noticeable 

and the shape much more stable (relative to time domain 

signal). 

The variation in the signal is also characterized in the 

histogram. This is because the histogram is a probability 

density function. If the time domain signal was always the 

same then its frequency spectrum would always be the same 

and the corresponding histogram would have no variation. 

That case would produce a single binned histogram and a 

100% probability of landing in that bin. Since these signals 

have significant variation the plot looks like the right half of 

a Gaussian distribution. 

This approach allows us to clearly differentiate between 

signals that closely resemble a healthy signal, as seen in the 

upper graphs in Figure 7. This also allows the algorithm 

processing to function speedily and more reliably than using 

the time domain signals. The drawback to this method is the 

overhead in data needed to train the algorithm on a healthy 

system behavior. 

Once the data array has been created from distribution, 

training of the algorithm can begin. There is no way around 

the length of the training period without compromising 99% 

confidence in evaluation; the minimum length for the 

training is 300 tests (5 minutes). This training performs best 

with a new system. 

In order to train the system, the user must store the fully 

developed data set, which can be done programmatically 

with the push of a button. Once the data is collected, it is 

formatted and stored in a read-only file that remains in 

nonvolatile memory on the sensor system. This design 

approach limits the size of the program, keeping the total 

cost of disk space below 30 kilobytes. 

In our experiments, we consider various fault scenarios 

including compound faults by considering amplifier 

degradation fault and capacitor degradation fault 

simultaneously since the characteristics of one failure mode 

may compensate for the characteristics of another. 

Figure 8 is a probability density function (PDF) plot of 

Ridgetop’s fault detection algorithm output from SHM. The 

x-axis represents the computed output SoH value across 

multiple induced fault conditions. The expected result was 

that the SoH value would decrease as more severe faults 

were injected. The theory, also proven by this plot, is that 

while health decreases, variation in the computed SoH 

increases. This asserts that as SMPS health decreases, 

system dependability breaks down. 
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Figure 8 – PDF of SMPS health with multiple fault cases 

 

The blue curve shown in Figure 8 represents the healthy 

system response which has a standard deviation of 1.0187%; 

the brown curve represents an early fault case, but already 

the standard deviation is 1.4454 %. 

The increase occurs in all except the first level cap fault, 

which still rates 75% healthy. These results show the critical 

distinction between normal and abnormal status. 

While the Health Distance is very promising in the initial 

stages of development, it would be helpful to consider other 

possible algorithms for this type of work. One that has a 

particular strength is a data mining approach called the 

Support Vector Machines (SVM) approach. This 

methodology is used for multivariate data in the machine 

learning realm. SVM is best described pictorially along with 

some preliminary analysis. Figure 9 shows nested rings in 

green, yellow, and red. These rings represent boundaries of 

varying SoH measurements. 

 

Figure 9 – SVM boundary thresholds 

Experimental data of frequency peaks from a SMPS is 

illustrated in Figure 10. There are a few peaks above the 

noise floor and in particular a peak at 80 kHz. Output filter 

capacitance is removed to observe the behavior of the 

system. Note that, instead of changing the frequency of the 

peak, the magnitude changed. The actual calculation would 

be a percentage of points landing inside the threshold ring 

versus landing outside the ring; over time this percentage 

should decrease. 

 

Figure 10 – SVM experimental data set 

7. DISCUSSION 

We have explained our data-driven analysis and testing 

results. The proposed approach is very effective in the initial 

stages of development by providing the critical distinction 

between normal and abnormal status in real time. Unlike the 

model-based methods, our approach can be applicable even 

in the complex real time system since it does not require 

developing an accurate mathematical model that represents 

the true system. But if it is possible to know the input to the 
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system, this disadvantage of model-based methods will 

become the strength in our pattern analysis. From this idea, 

we propose the hybrid pattern analysis shown in Figure 11 

combining our data-driven analysis as an initial pattern 

detector in a real-time system and model-based analysis as 

an advanced pattern detector, if we can develop an accurate 

mathematical model.  

 

Figure 11 – Hybrid pattern analysis 

We are in the stage of development of our pattern analysis 

methodology and algorithms. To develop the hybrid analysis 

idea, we may have several questions, for example: 

 What kinds of input conditions are needed to decide the 

applicability of model-based methods? 

 What are the benefits that we can get from model-based 

approach? 

 Are the identified benefits valuable compared to the 

case using only data-driven analysis? 

 Can hybrid pattern analysis be efficient in a real-time 

system? 

8. CONCLUSION 

We have presented data-driven pattern analysis with a 

proposed health distance and signatures in a standard IEEE 

1451-enabled smart power sensor and have the result 

demonstrating the effectiveness of our approach. We also 

represent boundaries of varying SOH measurements with the 

SVM approach. These presented data-driven approaches are 

valuable for showing the critical distinction in pattern 

analysis. Eventually making a fully functional innovative 

smart power sensor that supports fault detection and 

identification would be highly significant. We are currently 

exploring a variety of algorithms to develop the analysis 

methodology. Finally, we plan to extend our approach to 

develop hybrid pattern analysis that combines data-driven 

and model-based approaches in complex systems. 
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