

Introduction to Prognostics and Health Management (PHM)

Presented by Sonia Vohnout February 29, 2012

Sonia Vohnout, M.S.

Director of Business Development, Advanced Diagnostics & Prognostics

Sonia Vohnout holds an MS in Systems Engineering from the University of Arizona. She is a board member of the Society for Machinery Failure Prevention Technology (MFPT), an interdisciplinary technical organization strongly oriented toward practical applications. Ms. Vohnout has a diverse background and years of experience in the electronics and prognostics industry. She has published several papers on electronic prognostics and PHM applications.

About Ridgetop Group, Inc.

- Innovative Research and Technology Firm
 - Incorporated in 2000, and headquartered in Tucson, AZ
 - > Design services, prognostics and condition-based maintenance (CBM) solutions
 - > AS9100-C and ISO 9001:2008 Certified
 - > DO-178 and DO-254 compliant quality system
 - Strong market position with commercial and government customers in USA, Canada, Europe, and Asia
 - Servicing Aerospace, Automotive, Industrial, Medical segments
 - > U.S. Government: U.S. Department of Defense, Department of Energy, and NASA customers

Ridgetop Group Inc

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

3

₩Ż.

Outline

- What is prognostics?
- Condition-based maintenance (CBM)
- A prognostic framework
- Prognostic methods
- Examples
- Challenges and future direction
- Q&A

Ridgetop Group Inc 3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

N

Evolution of Maintenance Practices

Going from REACTIVE to PROACTIVE/PREEMPTIVE

In medicine, the most cost-effective way to cure disease is to **PREVENT** it

Ridgetop Group me

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

5

₩Ŷ.

Remaining Useful Life (RUL): The amount of time a component can be expected to continue operating within its given specifications (not necessarily a failure). Dependent on future operating conditions (input commands, environment, and loads).

 Ridgetop Group Inc
 3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com
 6

NR.

Prognostics

- Predictions are based on:
 - Analysis of failure modes
 - Detection of early signs of wear, aging, and fault conditions and current state of health
 - Correlation of aging symptoms with a description of how the damage is expected to increase ("damage propagation model")
 - Effects of operating conditions and loads on the system

Ridgetop Group Inc 3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

Health Management

Source: Scott Clements, "Introduction to Prognostics", PHM Society Conference, Montreal 2011

Ridgetop Group Inc

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

8

Simplified PHM Process

Ridgetop Group Inc

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

9

Goals of Prognostics

Increase Safety and Mission Reliability

- Improved mission planning
- Ability to reassess mission feasibility

Decrease Collateral Damage

- Avoid cascading effects onto healthy subsystems
- Maintain consumer confidence, product reputation

Decrease Logistics Costs

- More efficient maintenance planning
- Reduced spares

Decrease Unnecessary Maintenance

- Service only specific systems which need service
- Service only when it is needed

Ridgetop Group Inc.

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

₩?

Stakeholder Perspectives

Ridgetop Group Inc.

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

11

PHM System Example

Source: JSF Program office

Ridgetop Group Inc

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

12

Condition-based Maintenance (CBM)

- Set of maintenance processes and capabilities derived from real-time assessment of system condition
- Goal of CBM is to perform maintenance **ONLY** upon evidence of need
- Ultimate intent of CBM is to increase system operational availability throughout the system life cycle at a reduced cost

CBM and Electronic Prognostics

- Electronics are the keystone to successful deployment of complex systems
- Large mean time between failures (MTBF) numbers alone are not sufficient

13

 Technology exists to pinpoint systems that are degrading before they fail; supporting operational readiness objectives and cost-saving CBM initiatives

Ridgetop Group Inc 3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

Degradation Rates Dependent on Environmental Conditions

Usage Environment

- Usage monitoring would provide a safety benefit if actual usage is more severe than predicted (see the red region, T₁).
- Service life can be extended beyond normal replacement time if the actual usage severity is known (see the green region, T₂).

Figure 1: Economic and Safety Benefits of Diagnostics & Prognostics (Romero et al.1996).

Prognostics and Health Management (PHM) enables replacement only upon evidence of need

Ridgetop Group Inc

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

NR.

Faults in Complex Electronic Systems

- Existing innovative technologies address all of these critical fault areas with real-time sensors for:
- Aerospace
- Automotive
- Industrial
- Medical

₩Ż.

PHM Five-Level Model

Ridgetop Group Inc.

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

Prognostic Algorithm Categories

Reliability data-based

- Statistical models
- Consider historical time-to-failure data, used to model the failure distribution

Stress-based

- Fault adaptive model learned from accumulated knowledge
- Consider environmental stresses
- Condition-based
 - Estimate the life of a specific component under specific usage and degradation conditions

Ridgetop Group Inc

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

NZ.

Prognostic Framework: Trends, RUL, Uncertainty

Source: Scott Clements, "Introduction to Prognostics", PHM Society Conference, Montreal 2011

Ridgetop Group Inc

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

18

M

Prognostics Framework: Types of Uncertainties

- Real and accurate data is difficult to acquire
- We have measurements, which we correlate to damage through complex algorithms or reasoners
- Noise may influence the model's outcome
- Decision risk
 - How soon is too soon and how late is too late?
- Uncertainties:
 - Model uncertainty
 - Input data uncertainty
 - Measurement uncertainty
 - Operating environment uncertainty
- Measurement noise leads to more uncertainty

Risk vs. Probability of Failure (POF)

Source: Scott Clements, "Introduction to Prognostics", PHM Society Conference, Montreal 2011

Ridgetop Group Inc

20

Methods For Gathering Knowledge

- Failure Modes and Effect Analysis (FMEA)
- Failure Modes, Effects, and Criticality Analysis(FMECA)
- Fault tree analysis
- Designers / reliability engineers
- Seeded failure testing / accelerated life testing

21

ridgetopgroup.com

N

Fielded systems

Ridgetop Group Inc 3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300

Data-Driven Methods

- Models are based on historical operational data that characterize the system health
- Data are collected from sensors
- Data are analyzed and extrapolated to determine damage thresholds
- These models determine the remaining useful life solely from the data collected
- This approach is useful when the understanding of first principles of the system operation is not well known or when the cost of developing an accurate model is expensive

NZ.

Data-Driven Methods – Common Process

Ridgetop Group

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

23

Data-Driven Example

Source: Scott Clements, "Introduction to Prognostics", PHM Society Conference, Montreal 2011

Ridgetop Group Inc

M

Data-Driven Methods: Pros & Cons

PROS

- Easy and fast to implement/deploy
- Usually cheaper compared to other approaches
- May identify relationships that were not previously considered

CONS

- Requires lots of data
- It might be difficult to obtain run-to-failure data (lengthy and costly)
- May require a lot of training
- Results may be counter intuitive
- Data collected might be noisy
- Can be computationally intensive, both for analysis and implementation

Ridgetop Group Inc

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

25

₩?

Physics-Based Methods

- What is a "Physics-Based" Model?
 - Model derived from "First Principles"
 - Empirical model chosen based on an understanding of the dynamics of a system
 - →Equations define relationships between time, load, damage, environment, and operational conditions
 - →Damage propagation (crack growth model, fatigue of bearings)
 - Mappings of stressors onto damage accumulation
- We are looking for a correlation to the failure mode(s) of interest

Ridgetop Group Inc

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

26

N

Physics-Based Method Example

Ridgetop Battery Monitoring Systems

Intelligent Battery Control Module to Measure Rate of Voltage and Temperature Change

Solid State Circuit Breaker on/off state dependent on both voltage and temp

Ridgetop has designed an ASIC to monitor cell voltages. ASIC being modified for lithium-ion cells and batteries .

Ridgetop Group Inc

28

₩Ż.

Battery Data

Source: Bush, J., Vohnout, S., Hofmeister, J., "PROGNOSTIC HEALTH MANAGEMENT (PHM) SOLUTIONS FOR BATTERY PACKS USED IN CRITICAL APPLICATIONS", MFPT 2011

Ridgetop Group Inc

29

Sentinel SJ BIST HealthView[™] & SJ HALT[™]

SJ BIST[™] Operation

- Verilog firmware core (patent pending)
 - Each core tests two I/O pins
 - Pins are externally wired together
 - Small capacitor connected to the two pins

Mechanics of Failure

- · Plastic work (thermo-mechanical stress)
- Solder balls crack and then fracture

- Real-time in-situ monitoring of BGA interface health
- Canary sensor trigger or declining heath indicator

Eliminates <u>Could Not Duplicate</u> and <u>No Trouble Found</u> intermittent problems associated with FPGAs

Ridgetop Group Inc 3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com 30

Physics-Based Models: Pros & Cons

PROS

- Usually results tend to be intuitive
- Models can be reused
- If incorporated early enough in the design process, can drive sensor requirements
- Computationally efficient to implement

- Model development requires a complete understanding of the system and physics
- High-fidelity models can be computationally intensive
- Models need to account for uncertainty management

Ridgetop Group Inc

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

31

₩?

Hybrid Models

- In practice, many implementations use both Data-Driven and Physics-Based Model methods:
 - Use data to learn model parameters
 - Use knowledge of physical process to determine the type of analysis to apply
 - Data-Driven System Model in combination with a Physics-Based Fault Model (or vice versa)
 - Identify potential correlations between physics model and correlate using a data-based approach
 - Data fusion

Ridgetop Group Inc 3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300

ridgetopgroup.com

NR.

Hybrid Models: Pros & Cons

PROS

- Combines the strengths of each approach
- Robustness in design
- Results are both intuitive and match observations
- Can "mix and match" approaches to customize for the current situation

CONS

- There is still a need for data
- It can still be computationally intensive
- Need for in-depth system knowledge

Ridgetop Group Inc

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

33

NR.

PHM Challenges

Requirements Specifications

Validation and Verification

Integration

Uncertainty Management

Ridgetop Group Inc

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

Power Supply Prognostics

RUL declines as degradation damage progresses: becomes zero once degradation reaches FMEA predefined failure threshold

Ridgetop Group Inc

35

₩Ż.

Cable Prognostics

Ridgetop Group Inc

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

Condition-Based Maintenance (CBM) for F-35

00415 REV1

₩Ż.

Ridgetop Group Inc.

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

37

MEMS Sensor Technology

EP Mechanical Requirements	Description	Parameter
EP-1	Accelerometer peak impact	> 200 g
EP-2	Components and IC temperature rating	> 180 °F
EP-3	Sensor housing cap shall be RF transparent, i.e. teflon	
EP-4	Sensor housing	Press fit into 1.5" diameter shaft
EP Electrical Requirements	Description	Parameter
EP-5	Sensor data memory	2Mbytes
EP-6	Accelerometer sensitivity	< 20 mV/g at 100Hz
EP-7	Wireless full duplex data transfer	
EP-8	Wireless data rate	250 kbits/s
EP-9	Passive relay antenna used for passing data out of the transmission	
EP-10	Battery powered	3.6V high temp battery, 4.5 Ah, 200 C
EP-11	Battery life	4 months
EP-12	Data format shall be raw data, unprocessed	
EP-13	Sensor and signal conditioning bandwidth	20 kHz
EP-14	ADC number of bits	16 bits
EP-15	ADC conversion rate	> 250kHz
EP-16	Crystal oscillator frequency variance	< 40 ppm

Ridgetop Group Inc

PHM Software Architecture Diagram

Ridgetop Group Inc

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

39

Prognostic Health Management

Ridgetop Group

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

40

Cost Benefit Analysis: Summary

Source: Saxena, A., Celaya, J., Saha, B., Saha, H., Roychoudhury, I., Goebel, K., "Requirements Specification for Prognostics Performance – An Overview", AIAA Infotech @ Aerospace, Atlanta GA, April 2010.

Ridgetop Group Inc

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

41

1AZ

Future: A PHM Sensor

- A PHM sensor is a system that:
 - Is a collection of one or more different sensors
 - Acquires data
 - Processes and analyzes the data
 - Stores information
 - Built-in capability to respond with:

42

N

Ridgetop Group Inc 3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

Questions?

 Ridgetop Group Inc
 3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

43

1 Al

Upcoming Webinars

Торіс	Date	Time
Overview of Prognostics and Health Management (PHM) in the IT Industry	Wed. Mar 21, 2012	1:00 - 2:00 PM PDT
ARULE (Adaptive Remaining Useful Life Estimator) – ATTF (Advanced Time-to-Failure) to Diagnose and Predict System Health	Wed. Apr 25, 2012	1:00 - 2:00 PM PDT
IC Characterization with ProChek, a Compact Benchtop System	Wed. May 30, 2012	1:00 - 2:00 PM PDT
Implementation of Prognostics in Solar Applications	Wed. Jun 27, 2012	1:00 - 2:00 PM PDT
Troubleshooting Analysis and Decision Support in Complex Applications	Wed. Jul 25, 2012	1:00 - 2:00 PM PDT

For more information about Ridgetop Group Webinars, email us at info@ridgetopgroup.com

Ridgetop Group Inc

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

44

Thank you!

Ridgetop Group Inc

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

45

1 Al