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ABSTRACT 

An important aspect of an Integrated Electronics 
Prognostics System is to process Prognostic Health 
Management (PHM) data collected from a system platform 
to produce Remaining Useful Life (RUL) estimations, 
which are then input into a condition-based maintenance 
system.  In this paper we present generic Fault-to-Failure 
Progression (FFP) models and adaptive methods to 
produce RUL Estimations. The models and an adaptive-
reasoning processor have been designed and implemented 
as a MATLAB-based program that can be ported to JAVA 
and C. The program, called Adaptive RUL Estimator™ 
(ARULE™), is designed for use for a system component 
or assembly subject to fatigue damage.  Generic fault-to-
failure models can be used as-is or modified or one or 
more new models can be defined.  Data sets can be linked 
to a model-processor pair.  ARULE has an Application 
Programming Interface to let an application specify a 
model and invoke ARULE: ARULE adapts a model to the 
data and then uses the adapted model to produce RUL 
estimates with increasing accuracy. Presented are 
examples from Lithium-ion battery health data, power 
supply filter capacitor ripple voltage data and Ball Grid 
Array (BGA) solder joint fault data.
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1. INTRODUCTION 

A common prognosis method is to apply the environment 
and use conditions to one or more reliability-based or 
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acceleration models, such as a Coffin-Manson 
model, to produce a Remaining Useful Life estimate 
(NIST/SEMATECH, 2009). Reliability models are 
probability/statistics based, but their usefulness and 
applicability is dependent on well-defined 
acceleration tests and coefficient fitting to produce 
estimates. They are exemplified by “bathtub” 
curves” as shown in Figure 1. 
 

Figure 1. Bathtub curve. 
 
We present a method, Adaptive Remaining Useful 
Life Estimator

2
, which accepts Fault-to-Failure 

Progression (FFP) signature data (Goodman, 2007), 
adapts an FFP model to the data and then uses the 
adapted model to produce RUL estimates.  

2. ARULE APPROACH 

The ARULE approach requires a diagnostic sensor 
to “sense” data that is above a pre-defined “good-as-
new” floor and below a “failed” ceiling. 
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2.1 Fault-to-Failure Progression Signature  

 The progression of data from a floor to a ceiling is defined 
as a Fault-to-Failure Progression (FFP) signature. The FFP 
profile can be modeled to have beginning and end times, 
and floor and ceiling magnitudes. As data is presented to 
ARULE, the model is adjusted to account for changes in 
data position, velocity and acceleration. After the model is 
adjusted for a received data point, it is used to produce an 
RUL estimate.  

2.2 Degradation Fault Profile Signature  

Design and testing has begun to have ARULE recognize 
and use a Degradation Fault Profile (DFP) signature, such 
as that represented by decreasing power output of a 
system. ARULE handles DFP signature data in a similar 
manner to the FFP examples presented in this paper, the 
difference being that FFP signatures generally increase in 
magnitude while DFP signatures generally decrease in 
magnitude.. 

2.3 Healing (Annealing)  

Real components and systems exhibit healing in the sense 
that as stresses are reduced, the level of damage tends to 
lessen as, for example, lattice damage in solid state devices 
anneal. ARULE recognizes and accounts for evidence of 
healing in the data. 

2.3 Open Architecture 

ARULE uses an open-architecture Application 
Programming Interface (API) to do the following: (1) let a 
model be defined or used; (2) to accept input data, (3) to 
produce output RUL estimates and (4) to return an adapted 
model (see Figure 2). 

[RC RS MODEL] = AMGR(MODE,MNAME,MLOC,NF) ;   %  

get model to initialize  

 

Figure 2: API to get an ARULE model 
 

2.4 Correlate Measurements: Invasive to Non-invasive  

Non-invasive data measurements should be used to create 
an ARULE model. One way to do that is to find an ideal, 
but invasive set of data, such as that shown in Figure 3, 
and then correlate the ideal data to some non-invasive data 
such as that shown in Figure 4.  Figure 3 is the plot of 
leakage current for aged filter capacitors installed in a 
switched mode power supply (SMPS): Figure 4 shows a 
plot of non-invasive ripple voltage measurement and the 
FFP model (mauve-colored plot) with the inflection points 
highlighted. 
 
The sensor used to take the measurements of ripple voltage 
was a diagnostic sensor in that the measurements of 
interest exceeded a defined “as good as new” value of less 
than 1.5 mV. 
 

 

 

Figure 3. Invasive leakage current data. 

 
 

Figure 4. Non-Invasive Ripple Voltage. 
 

2.5 Exponential Functions and Fatigue Damage 

Fatigue damage phenomena can be modeled using 
single exponential functions, double (or higher) 
exponential functions or as compound exponential 
functions.  

2.6 Straight-line Representations of Models 
 
Appropriate logs of exponential functions result in 
one or more straight lines, which in turn, can be 
used to approximate real data. Some examples are 
Bode plots, square-law diode equation, and 
electron/hole mobility. Manipulating the straight-
line representations of models is the equivalent of 
manipulating the models. 

2.7 FFP and DFP Examples 
 
Some FFP examples are the following: leakage 
current, ripple voltage, fault counts and increase in 
frequency. Some DFP examples are the following: 
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battery charge, loss of transmission power, fuel capacity 
and decrease in frequency. 

3. ARULE EXAMPLES USING REAL DATA 

In this section, we present some battery health examples of 
using ARULE to produce RUL estimates. 

3.1 Battery Health 

In 2008, a NASA team (Goebel, 2008) headed by Dr. Kai 
Goebel examined Prognostic Health Management (PHM) 
issues using battery health management of Gen 2 cells, an 
18650-size lithium-ion cell as test case. Dr. Goebel 
observed that prognostics attempts to estimate remaining 
component life when an abnormal condition has been 
detected. He further observed that the key to useful 
prognostics is not only an accurate remaining life estimate, 
but also an assessment of the confidence in the estimate. 
 
The methodology was very similar to that outlined in the 
previous section: NASA identified a FFP signature as 
being the electrolyte resistance plus the charge transfer 
resistance (RE + RCT) and a DFP signature as being the 
battery charge; NASA defined a 30% fade in capacity as a 
failed battery state; and NASA verified there was a linear 
correspondence between capacity, C/1, and the (RE + RCT) 
impedance. 

3.2 Impedance and Uncertainty Distribution 

A 70-week test was performed during which (RE + RCT) 
impedance measurements were taken. A second-degree 
polynomial was used at prediction points to extrapolate out 
to the damage threshold, and confidence bounds were 
projected onto the damage threshold to show the 
uncertainty distribution. Figure 5 shows the resulting plot. 
 

Figure 5: Impedance and uncertainty distribution 
 
 
 

3.3 Capacity and Uncertainty Distribution 

Similar techniques were used to produce the capacity and 
uncertainty distribution shown in Figure 6. 

Figure 6: Capacity and Uncertainty Distribution 
 

3.4 Summary Evaluation of the NASA Results 

NASA-conducted evaluation of the results show the 
prediction at week 32 (220 days) was very poor: 7.5 
weeks late (52.5 days). Other methods, Gaussian 
Process Regression and Particle Filtering, were 
evaluated. Particle filtering yielded an RUL error of 
5.9 weeks early at week 52 and 2.6 week early at 
week 48. Early and reasonable predictions are 
considered more favorable than late predictions to 
avoid unanticipated failures 
 

3.5 NASA Data and ARULE 

The NASA (RE + RCT) impedance data was used to 
create an ARULE FFP model (mauve plot shown in 

 
 
Figure 7) that had a 441-day (63 weeks) predicted 
failure date.  
 
 
 

 
. 
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Figure 7. Battery impedance (black) and ARULE model 

(red). 

 
The data was then given point-by-point to ARULE, and 
the returned RUL estimates were saved and plotted versus 
time (see Figure 8); and the accuracy of each returned 
RUL estimate was plotted (see Figure 9). 

 

Figure 8. RUL estimates, resistance data. 

 
Referring to Figure 9, it is seen that the RUL estimates 
from ARULE converge and the 32-week is less than 5%: 
the penultimate RUL estimate had an error of 1.5%, and 
the estimate prior to that had an error of 2.3%.  These 
estimates are extremely accurate given a 4-week sampling 
period.  
 
Especially note the convergence from a 441-day predicted 
failure of the model to the actual defined failure of 420 
days.  
 
 

 

 

 
Figure 9. Accuracy of the RUL estimates from 

ARULE. 
 

3.6 EXTRAPOLATED DATA and ARULE 

We then used the same ARULE model to process 
the extrapolated NASA data. As seen Figure 10, the 
result is the model predicts the same failure day 
(441 days), but the data indicates a failure at day 
504. 
 

 

Figure 10. Extrapolated NASA data, same ARULE 

model. 

 
The ARULE estimates are shown in Figure 11. 
Notice that ARULE adjusted the RUL estimate after 
day 329 to take into account for a higher rate of 
change in the extrapolated data compared to the 
model. 
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Most importantly, note that after the ARULE adjustment 
ending at 358, ARULE converged on an accurate failing 
date of 504 days. 
 
 
 
 

Figure 11. RUL Estimates. 

 
Figure 12 shows the accuracy of the RUL estimates for 
the extrapolated data.  Again, the ARULE accuracy is 
largely dependent on the period of time between data 
points.  For the battery health data, because the period was 
28 days, on the ARULE estimates will have, on average, 
an accuracy of +/- 14 days. 

 

 
 

Figure 12: RUL accuracy for the extrapolated data. 

 

 
4. ARULE OPERATIONAL CHARACTERISTICS 

ARULE has been evaluated using ripple voltage 
measurements and counts of solder ball intermittent faults 
and has been evaluated as being equally valid.  The 
primary reason is because the ARULE engine has been 
designed and development to be independent of the type of 

data it is processing, and it is independent of the 
units of measure of the data. 
 
ARULE is a fast processor because it does not have 
to process or reprocess large amounts of data: (1) 
the model is the required memory for accurate RUL 
estimating and (2) the model is adapted to the data 
as each data point is processed. 
 
ARULE is cognizant that the data can exhibit both 
degradation and healing; that the rate of 
accumulated damage as exhibited by the data can 
increase, remain the same, or decrease. 
 

5. SUMMARY and CONCLUSION 

ARULE is a fast, accurate Remaining Useful Life 
estimator for Condition Based Maintenance (CBM) 
applications and is currently evaluated as being at 
Technology Readiness Level (TRL) of 5.  ARULE 
uses efficient memory and calculation methods: It 
takes less than 200 microseconds to produce an 
estimate. It is anticipated that the processing speed 
will be improved when ARULE is ported to a non-
MATLAB platform. 
 
ARULE is tuned to produce early projected end of 
life estimates. 
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