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Abstract—Historically in aviation safety, sensor technology 

intrusion has presented a barrier to enabling prognostic 

solutions into mission critical, on-board power systems. 

Without prognostics, catastrophic, intermittent, and damage 

propagation faults can compromise the integrity of even the 

best power systems over time. The problem posed by 

physical limitations, such as size, weight, and wiring, 

prevents the upgrade of in-flight power systems with 

prognostic equipment. The solution is development of a 

non-intrusive prognostic technologies suite designed for 

minimal impact on existing systems. Specifically, we 

explore a Hidden Markov Model (HMM) approach to 

prognosticate the servo loop of an EMA. Results of this 

study indicate that a fault-progression methodology 

overcomes some of the disadvantages of the more familiar 

FMEA approach, which does not account for the 

contribution of unobserved failure to a degradation 

trajectory. We show by example how the Ring-down 

methodology, often used in power systems, can be adapted 

to servo loop systems employed in aircraft actuator. 

Adoption of this approach to electronic prognostics 

improves monitoring of the behavior and health of key or 

critical components not only ensures safety and success, it 

makes dynamic switching to back-up systems, fault 

mitigation, load-shedding, and condition-based maintenance 

(CBM) technically and economically feasible.
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1. INTRODUCTION: FLY-BY-WIRE SYSTEMS 

The Airbus A320. The Boeing 777. The Tupolev TU204. 

These are a few of the commercial aircraft that have joined a 

much longer list of military aircraft that have sparked a 
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controversy within the reliability profession. Fly-by-wire 

systems have been heralded as the savior of an industry 

while also being condemned as unsafe. Fly-by-wire aircraft 

use computerized systems to control engine fuel-flow rate, 

flight surface movements, and other activities. A computer 

can make hundreds of flight corrections and updates per 

second, far more than a human pilot. In theory, this should 

lead to more economical, smoother, and safer air flight. 

Greater, more precise control has, in turn, made possible 

aircraft that are aerodynamically unstable. With the pilot 

removed from direct connection to the flight control surfaces 

in a fly-by-wire aircraft, knowledge of component failure 

modes has become critical in an industry already filled with 

maintenance issues and mission-critical equipment. 

2. THE FAILURE OF MTBF 

In 1995, a cornerstone of reliability was called into question. 

Mean Time Between Failure (MTBF) is considered the 

“useful life” of a device, excluding the early failure and 

wear-out periods as shown in the Reliability or “Bathtub” 

Curve. The aeronautical industry found use of MTBF 

questionable because of its inaccuracy when applied to real 

systems and the nature of the culture it engenders. Because it 

does not take into account component dependencies, MTBF 

can overestimate reliability. Obtaining age-to-failure data is 

expensive and not always available. Many MTBF values for 

components are stored in databases and found to be very 

inaccurate. Some estimates have set MTBF accuracy for 

component failure rates at only 40%. The difficulty in 

identifying and correcting MTBF has led to adoption of an 

“acceptable” level of failures. This corruption of reliability 

removes the drive to eliminate the root cause and take 

corrective action. As a result, NASA and other organizations 

have embraced prognostics. 

3. LEVELS OF OBSERVABLE INDICATORS 

Unlike traditional mechanical components and subsystems, 

electronic devices provide less observable indicators for 

making maintenance and diagnostic decisions. That would 

seem to be a true, straightforward statement. Or is it? 

For example, the electronic power systems and 

electromechanical actuators (EMA) examined in this paper 
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would appear to be typical of solid-state technology. Either 

they work or they don’t work. When viewed through the 

filters of the human eye, perception, and experience, there 

seems to be less observable states.  

Observable Indicators - Mechanical Vs. Electronic 

For maintenance crews at engine depot facilities, 

degradation such as a worn tooth in a gear can be observed, 

measured, reported, and scheduled for service. On the other 

hand, an integrated circuit-based (IC) device either worked 

or didn’t work.  

In the 1980s, the first, and only, observable fault indicator of 

an overstressed electronic component was a puff of smoke 

and reek of burnt plastic on power-up. When asked what 

happened, the inevitable reply was, “It let the smoke out.” 

However, experience made more subtle indicators 

observable. Electricians, in particular, became adept at 

finding fault indicators. One electrician observed that part of 

troubleshooting a DC motor involved touching the H-Bridge 

MOSFETs. A hot one was damaged; the one that took off 

your fingerprint was shot. 

The question, is it true that electronic components provide 

less observable indicators than mechanical components?  

Preliminary results suggest that there are just as many 

observable indicators in electronic systems as there are 

mechanical, if one knows what to look at. 

4. THE HIDDEN MARKOV MODEL 

The Hidden Markov Model (HMM) is a statistical modeling 

technique used when the challenge is to determine hidden 

parameters affecting an observable state. This is one of the 

great advantages HMM has over MTBF. Whereas MTBF 

ignores the dependencies between system components, 

HMM relies on the play of dependencies to describe and 

quantify what cannot be directly observed.  

The capacity for customization is a strength since an HMM 

matrix is highly dependent on its particular operational 

scenario. Due to the sensitivity to changes in component 

dependencies, HMM-driven engines can be used for 

different monitoring approaches. 

Key Monitoring Approaches 

There are two key monitoring approaches to consider when 

designing an HMM: whether to model for faults selected a 

priori or to model from data-based extrapolation. 

The a priori monitoring approach is best suited when there 

is prior knowledge of component fault states. This prior 

knowledge of system failure modes could be from databases 

of MTBF, trouble reports, or other reliable historical data. 

This approach works well with systems using established 

components and technologies. Its weakness lies in 

anomalous faults not accounted for in prior knowledge. 

These faults tend to be placed in a predetermined category, 

resulting in an error. 

The data-extrapolation monitoring approach is best suited 

when prior knowledge of fault states is not available. This 

approach uses algorithms to estimate fault probabilities 

directly from the data with only information needed from the 

normal operating state. This approach works well for 

systems using components or technologies that are new. The 

weakness of this approach is the time needed for the training 

data to create reliable fault states. 

Self-Monitoring of Online Communication Network  

Another advantage to HMM is its effectiveness in online 

health monitoring of communication and network systems. 

Using an HMM engine to power an online prognostics 

system would not only allow for health monitoring of 

geographically distributed electronic assets, but also 

simultaneous real-time prognostics on the communication 

network itself.    

For example, antennas are the cause of considerable faults 

within communication networks. Fault detection and 

isolation is often complicated and lengthy since establishing 

the root cause in a communication chain is difficult. A 

dropped carrier lock could be caused by the environment, 

the positioning EMA, the electronic power supply, defective 

tachometer, or other faults. A prognostic engine using the 

Markov process could diagnose itself as well as the targeted 

components. While accounting for multiple fault conditions 

is not included in many solutions which, instead, monitor for 

single-event faults in components, an ideal prognostic 

network would self-monitor for its own internal failures. 

5. APPLYING MARKOV PROCESS TO EMAS   

Electro-Mechanical Actuators, or EMAs, such as the linear 

actuator depicted in Figure 1, are replacing their hydraulic 

counterparts in many aerospace applications, including 

military and commercial aircraft. Examination of the servo 

loop reveals a Markov process well suited for prognostics-

enabling. The coil winding of an EMA is dependent on 

MOSFETs and gate drivers in the H-Bridge. Failure thought 

to originate at the coil windings is actually a composite of 

unobserved or “hidden” damage propagated from the 

MOSFETs and gate drivers. Since EMAs rely on the 

complex interactions of individual components, MTBF 

estimates are typically much longer than documented service 

life. Likewise, Failure Mode Error Analysis (FMEA) 

techniques are fundamentally flawed since the contribution 

of unobserved components, in this case MOSFETs and gate 

drivers, are propagating damage that is not tracked, 

monitored, or otherwise accounted for.  
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So, although EMA technology provides advantages to Fly-

by-wire aircraft by reducing overall vehicle weight and 

eliminating fluid leakage problems, there remain reliability 

issues keeping the true value for contributing to lower 

operation, lower maintenance costs, and improved flight 

control from being realized. With the current trend of fly-by-

wire subsystems and the critical function aircraft EMAs 

provide, they have become an obvious candidate for 

prognostic-enablement. 

 

Figure 1. Linear Electromechanical Actuator 

For ease of adoption, non-invasive solutions are preferred 

for prognostic-enablement of electronic subsystems. Toward 

that end, Ridgetop’s patent-pending RingDown
TM

 

technology, originally developed for electronic power 

system prognostics, can be adapted to the servo loops 

employed in aircraft actuators. More specifically, 

characteristic ringing can be observed in the following error 

waveform captured in response to an electrical or 

mechanical impulse imposed on the EMA. 

Efficacy of this approach is demonstrated through 

simulation. The Brushless DC (BLDC) motor servo loop 

block diagram shown in Figure 2, which  utilizes position 

feedback provided by a resolver or hall sensors to execute a 

motion profile, serves as the basis for the simulation model 

used in this research. For the example presented, 

disturbances in the electrical and mechanical elements of the 

actuator system are manifested in the following error, or 

offset between the actual and commanded shaft position. 

 
Figure 2. Block Diagram of BLDC Motor/EMA Servo Loop 

A non-invasive prognostic sensor applies an electrical or 

mechanical disturbance to the drive stage or rotor shaft, 

respectively, while monitoring the system response. In a 

linear actuator, the rotor is coupled to a lead screw to 

provide linear motion. Figure 3 illustrates the deviation in 

following error when a lead screw bearing is degraded, or 

worn out, compared to a previously recorded baseline 

response to a position jog.  

 
Figure 3. Mechanical Fault Simulation 

Similarly, the following error of the motion control system 

can be analyzed to assess the State of Health (SoH) of the H-

Bridge circuit common to brushless DC motor servo drives. 

Figure 4 provides graphs of the position and following error 

when all of the components of the H-Bridge circuit are 

healthy. When the H-Bridge is working normally, the rotor 

position closely tracks the target position, resulting in nearly 

zero following error until a change in direction is 

commanded. The overshoot and oscillations observed at the 

start of the simulation and the point where the rotor position 

changes direction are a function of the servo loop damping 

factor and is normal behavior. 

 
Figure 4. Healthy H-Bridge Simulation 

The H-Bridge power stage consists of pairs of MOSFET 

switches. For a 3-phase BLDC motor, there are three pairs 

of MOSFET switches, one per winding phase. Using Pulse 

Width Modulation (PWM) techniques, the MOSFET 

switches control the current through the coil windings and 

hence, rotation of the rotor. Essentially, the duty cycle of the 
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PWM signal is adjusted to change direction of the rotor or to 

hold it steady at a commanded position. That is, a 50% 

PWM duty cycle yields no movement; duty cycle less than 

50% causes movement in one direction (e.g., clockwise) 

while duty cycle greater than 50% causes movement in the 

opposite direction (e.g., counter-clockwise). 

Figure 5 illustrates the effect of degradation (e.g., increased 

internal resistance) on one MOSFET switch in a single 

phase of the H-Bridge. As can be seen in the top graph, the 

rotor position is greater than the target position throughout 

the simulation. When a change in direction is commanded, 

the rotor position overshoots slightly, compensates and then 

attempts to follow the target position. The following error 

graph reveals the anomalous control loop behavior. The 

increased following error, noted at simulation times of 1.0 

and 6.3 seconds, is due to the degraded MOSFET switch, 

which results in faster than normal rotor response to the 

commanded position change and the offset observed 

between the actual rotor position and target position. 

 

Figure 5. Damaged H-Bridge MOSFET Simulation 

The observed system response will be different depending 

on which MOSFET switch is damaged. For example, if one 

of the high-side MOSFET switches is degraded, the rotor 

position leads the target position and positive following 

error is observed, as shown in Figure 5. If one of the low-

side MOSFET switches is degraded, on the other hand, the 

rotor position will lag the target position and negative 

following error will be observed. 

Clearly, degradation of individual H-Bridge components, 

like the MOSFET switches, can have a profound effect on 

the operation of an EMA system. How component damage 

propagates through the motor drive is a key element of 

Ridgetop’s EMA prognostic research. Our initial H-Bridge 

damage propagation analysis focuses on the effect of a 

damaged gate driver amplifier on the MOSFET switch it 

controls. 

As shown in Figure 6, Ridgetop’s approach to EMA H-

Bridge damage propagation analysis involves: 

 Applying various fault conditions to each critical 

component of the EMA H-Bridge, starting with the gate 

driver amplifiers (D1) and progressing to the MOSFET 

switches (D2) and coil windings (D3) of each phase. 

 Conducting lab experiments to acquire and characterize 

the actuator following error associated with each fault 

condition and the resulting stress effect on the other 

components in the system. 

 Analyzing Fault-to-Failure Progression (FFP) signatures 

on the acquired test bed data and feeding lab results 

back into the Simulink model. 

 

Figure 6. Ridgetop’s H-Bridge Damage Propagation 

Analysis Approach 

The purpose of the gate driver, common to servo drive H-

Bridge circuits, is to boost the TTL or CMOS low- and 

high-side PWM commutation signals generated by the 

motion control logic (for example, microcontroller or DSP) 

to levels suitable for driving the MOSFET or IGBT switches 

of the H-Bridge. The gate driver is typically a very stable 

device; however the bootstrapping configuration of the gate 

driver circuit introduces a problematic capacitor. Damage or 

degradation in this part will lead to latch of the high-side 

MOSFET of the phase with which it is attached.  Ridgetop’s 

initial damage propagation research analyzes the effect of 

the degraded boot-strap capacitor with gate driver failures 

on the MOSFET switches of the servo drive H-Bridge. 

To simulate a bootstrap capacitor failure on the gate driver, 

a baseline 50% duty cycle was introduced to a single phase 

of the EMA test bed, with a variable capacitance, and the 

outputs were recorded.  The signals for one phase are shown 

in Figure 7 with non-degraded capacitance. 
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Figure 7. Winding control signals for several values of 

bootstrap capacitors. 

When the capacitor begins to deteriorate the resulting wave 

form will no longer drive the winding current correctly.  

Health trending will not predict this kind of error due to the 

swiftness of the transition.  The latch up condition is caused 

by and under sizing of the boot-strap capacitor.  There is a 

breaking point for this system was determined to be ~70nF, 

which resulted in the wave form shown in Figure 8. . 
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Figure 8. Loss of bootstrap capacitor in H-bridge control 

signal. 

The VB pin on the gate-driver is stuck in the “on- state.”  

This damage then propagates out of the gate driver (D1) in 

the H-bridge (D2). 

When the gate driver behaves likes this, the low-side 

MOSFET is forced to conduct continuously.  This 

conduction results in large amounts of heat generated in that 

MOSFET as a result of being operated outside saturation.  

The actuator system has greatly reduced functionality, and if 

these symptoms are not recognized the low-side MOSFET 

will fail.  Once it fails the damage will propagate to the 

high-side MOSFET which will no longer have an attachment 

to ground. This will cause the output to the motor to always 

conduct causing possible damage to the motor coil windings. 

This later stage damage can be observed by the casual 

inspector. 

Figure 9 provides a simple Markov chain used to model the 

damage propagation from the EMA H-Bridge through the 

coil windings of the BLDC motor. Each node represents the 

condition of an individual component’s health, while arrows 

represent the dependencies between component health 

conditions. 

 

Figure 9. Simple Markov Chain of Damage Propagation 

In this model, D1 and D2 are hidden nodes, while D3 is an 

observable node. Although D3 may be diagnosed as a 

winding failure, it is dependent upon accumulated wear on 

the boot-strapped gate drive capacitor and MOSFET 

switches, D1 and D2, respectively.  By collecting samples 

from the output or observable states one can use 

predetermined error signatures (specific to each system) to 

calculate the current health of the system and use HMM to 

back out the probability of reliability in unobservable states 

(D1,D2) and extrapolate State-of-Health data. 

A methodology, like HMM, that accounts for underlying 

wear parameters is better suited for analyzing the State-of-

Health (SoH) and remaining useful life (RUL) of systems 

like the EMA. 

6. CONCLUSION 

The experimental results and analysis presented herein may 

best be exemplified with EMA control of an aircraft wing-

flap. The actuator shaft controls the position of movable 

parts on aircraft, such as control surfaces, and as such 

stability depends mainly on the precise control of each 

actuator. Errors in the commanded position, due to a boot-

strap capacitor, can cause unpredictable performance with 

possibly catastrophic results. Clearly, prognostic-enabling 

aircraft EMA systems would help to mitigate this costly risk. 

Conventional methods for estimating life consumption are 

based on over-confident MTBF estimates and often result in 

a shorter than expected service life. What is too often 

ignored is that an EMA relies on complex interactions of 

individual components. That is, EMA health is not simply a 

sum of unrelated parts. Wear on any one component may 
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affect the life and reliability of another component. A fault 

can therefore cause a multiplying effect on failure rate that 

results in a reduction of overall service lifetime. 

A novel approach to predicting the SoH of electronic power 

systems based on a hidden damage propagation model and 

the analysis of wear-out signatures is proposed. By 

monitoring impulse responses, the damage level in 

individual components is extracted from the Eigen values of 

the transient waveform. Unlike strict trending approaches, 

application of a HMM fault-to-failure progression 

methodology considers the interdependence between 

individual components and provides a more accurate 

prediction of EMA service life. 

One challenge of the proposed methodology is to equip the 

EMA with a non-invasive prognostic sensor. An elegant 

solution does exist; a ‘virtual’ prognostic sensor can be 

created in the firmware of the servo drive control, as shown 

in Figure 10. It has been demonstrated, through simulation, 

that Ridgetop’s patent-pending RingDown technology can 

be adapted for this purpose.  

Often difficult and expensive to inspect, aircraft actuators 

are frequently removed and replaced for maintenance 

reasons, whether faulty or not [2]. To compound matters, 

many problems reported in-flight cannot be replicated 

during on-ground retest and are therefore dismissed as 

Could Not Duplicate (CND) or No Trouble Found (NTF). 

At worst, prognostic-enablement would help alleviate this 

costly diagnostic-repair cycle through support of CBM. At 

best, prognostic-enabled aircraft EMAs could help pilots 

avert potential catastrophic disaster. In any event, system 

availability is improved while maintenance costs are reduced 

by combining effective prognostic sensing techniques with 

advanced fault trending analysis, such as HMM, to 

accurately predict the remaining service life of the actuator 

system. 
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Figure 10. Virtual RingDown Sensor Integrated with MCU
 [1] 
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