
© 2001, Ridgetop Group, Inc. Page 1 of 15

RINCON™ - A Rigorous Tool for Accurate
RF/Microwave Modeling and Simulation

D.Goodman <doug@ridgetop-group.com>,
G. Serdyuk <gserdyuk@ridgetop-group.com>

Ridgetop Group, Inc.
 3580 West Ina Road

Tucson, AZ 85741

1 Introduction

A key benefit of creating a new analysis tool is the ability to incorporate recent advances in modeling technology to provide
the RF/Microwave Designer with enhanced capabilities. Using VHDL-AMS as a base, the Authors have developed a powerful
Modeling/Simulation tool with unparalleled modeling capabilities for rigorous and accurate modeling of complex devices.

Conventional netlist-oriented primitive models do not provide the fidelity necessary nor do they provide the interchangeability
that support collaborative design activities. The Authors have previously described the VHDL-FD extension to the VHDL-
AMS language [1] that incorporates frequency domain capability for rigorous RF and Microwave device modeling. This paper
describes examples of applying the VHDL-FD toward the creation of new models.

2 Simple VHDL-FD example

To present features of VHDL-FD, let us consider simple circuit:

This circuit may be represented by simple netlist in terms of VHDL-FD:

entity simple_circuit is -- declare of some circuit
end entity simple_circuit
--
architecture netlist of simple_circuit is -- define circuit
 constant Um: real := 1; -- amplitude value
 constant R: real := 100; -- resistance
 constant C: real := 5.e-12; -- cap 5pF
 constant fr: real := 1.e+9; -- frequency 1GHz
 terminal a: electric; -- single node
begin
 R1: entity res(eq) generic map(R) port map (a, GROUND);
 C1: entity cap(eq) generic map (C) port map (a, GROUND);
 E1: entity source(frequency_domain)
 generic map(Um, frequency) port map (a, GROUND);
end architecture;

This netlist is similar to SPICE netlist (in general) and defines some interconnection of elements. Elements are referenced by
their entity name and architecture name - like "res(eq)" where "res" is entity name and "eq" - architecture name. The language
allows predefinition of some objects in upper section (like "constant" and "terminal").

But this circuit description is not complete, because it knows nothing about what does it mean "res(eq)" or "cap(eq)". To give
the simulator an idea about properties of component it is necessary to define it. It may be done in term of another components
(like SPICE's subcircuits), but may be done in terms of equations, which is distinct feature of language, which is derived from
VHDL-AMS [2]:

© 2001, Ridgetop Group, Inc. Page 2 of 15

entity res is
 generic (r: real); -- generic parameter
 port (terminal a, b: electrical); -- ports to be connected
end entity res;
architecture eq of res is
quantity ur across ir through a to b; -- define quantities
begin
 ir==ur/r; -- quantities interrelation - it is EQUATION
end architecture;

This code contains a few new statements:

* definition of quantities "ur" and "ir" as through and across quantities in branch a-b;

* simultaneous statement "==", which represents equation in the module.

Now it is known, what is it "res" and what is the architecture "eq" of it. A similar way is used to define other components of
the circuit.

But this is not the only way to describe abovementioned circuit. As you can see, VHDL-FD allows the user to handle with
equations, not only with components and their interconnections. So we can define another architecture of abovementioned
entity, which describes the circuit:

architecture equations of simple_circuit is -- define circuit
 constant Um: real := 1; -- amplitude value
 constant R: real := 100; -- resistance
 constant C: real := 5.e-12; -- cap 5pF
 constant fr: real := 1.e+9; -- frequency 1GHz
 quantity Va: real;
 quantity i, ic: real;
begin
 i== Va/R+ic; -- source current = resistor current + cap curent
 ic'FD==Va'FD*(math_j*2*math_pi*FREQUENCY())*C; -- cap. current
 if (FREQUENCY() = fr) use -- define source voltage
 Va'FD == Um/sqrt(2.);
 else use
 Va == ZERO; -- it is predefined: ZERO = COMPLEX(0,0);
 end use;
end architecture;

Here you can see a few new constructions:
* free quantity declaration "quantity";
* frequency-domain attribute " 'FD ";
* if-use-else construction;
* predefined function returns current frequency "FREQUENCY()".

This architecture defines behavior of the circuit not using terminals - only unknown variables "quantities". These two
approaches to define circuit and/or system can be mixed to achieve optimum trade-off between degree of detail and
generalization of different parts of (sub-) system.

3 Modeling using VHDL-FD

Proposed VHDL-FD language variant is capable to express even most complex behavior both in time- and frequency- domain.
To illustrate modeling capabilities, we describe modeling process for different components. Now consider more rigorously the
following examples.

3.1 Lumped passive components

To describe usual circuit component it is necessary to define topology (i.e. branches and associated quantities) and relations
between branch quantities. See the following example for a resistor.

Component description is divided onto two parts - interface ("entity") and body itself ("architecture").

entity res is -- entity "res"
 generic (r: real); -- generic parameter
 port (terminal a, b: electrical); -- ports of entity

© 2001, Ridgetop Group, Inc. Page 3 of 15

end entity res;
--
architecture eq of res is -- define architecture
quantity ur across ir through a to b; -- quantities
begin
 ir==ur/r; -- quantities interrelation
end architecture;

The architectures provide flexibility in avoiding problems found in conventional simulators, such as divide by zero situations,
e. g. as above in case of r=0. This is handled by including a test for a zero value in the denominator, then calculating the value,
or assigning a value to current reflecting a zero value of resistance:

architecture eq_zero of res is
 quantity ur across ir through a to b;
begin
 if(r /= 0) use
 ir==ur/r; -- usual interrelations between current and voltage
 else
 ur==0; -- if resistance == 0 => voltage == 0 too
 end use;
end architecture;

Both forms of architecture can be used in circuit-level description:

entity gilbert is
end entity gilbert;
--
architecture component of gilbert is
...
R7: entity res(eq) -- for this element resistance != 0
 generic map (1500) port map (node1, node7);
R8: entity res(eq_zero) -- and for this element may be == 0
 generic map (0) port map (node6, node7);
...

Similar code describes other simplest passive components:

-- CAPACITOR --------------------------------------
entity cap is
 generic (c: real);
 port (terminal a, b: electrical);
end entity cap;
--
architecture eq of cap is
 quantity uc across ic through a to b;
begin
 ic'FD==2*math_pi*math_j*FREQUENCY()*c*uc'FD;
 -- FD extension allows to operate in frequency domain: Ic == j*2*PI*f*Uc
end architecture;
--
-- INDUCTOR --------------------------------------
entity ind is
 generic (l: real);
 port (terminal a, b: electrical);
end entity ind;
--
architecture eq of ind is
 quantity u across i through a to b;
begin
 if (FREQUENCY() /= 0) use
 i'FD==u'FD/(2*math_pi*math_j*FREQUENCY()*l);
 -- usual I=U/ZL
 else
 u'FD==0; -- if Zl ==0; -> UL == 0 too
 end use;
end architecture;

© 2001, Ridgetop Group, Inc. Page 4 of 15

It is possible to define more complex behavior for the component, e.g. introduce the temperature dependency of the
component. Sure, it impacts interface too:

-- CAPACITOR with temperature dependency ------------------
entity cap_temp is
 generic (c: real, ct: real);
 port (terminal a, b: electrical;
 quantity temp: thermo); -- input parameter to pass temperature
into model
end entity cap_temp;
--
architecture eq of cap_temp is
 quantity uc across ic through a to b;
begin
 ic'FD==2*math_pi*math_j*FREQUENCY()*uc'FD*(c+ct*temp);
 -- capacitance is temperature-dependent
end architecture;

The foregoing examples describe VHDL-FD capabilities in a very basic form, and illustrate the capabilities it provides.

3.2 BJT

To present more modeling capabilities of VHDL-FD, consider the bipolar junction transistor model.

In this example no parameters will be defined in the interface, but any parameters can be included at a later time. And (in first
model) no capacitances will be included.

entity bjt is
 port (terminal e,b,c : electric);
end entity;
--
-- EBERS MOLL BIPOLAR SIMPLEST ---------------------
architecture em1 of bjt is
 constant i0: real := 1.e-12; -- saturation current of diode
 constant alpha: real := 35; -- exponent factor
 constant af: real := 0.99; -- forward current gain
 constant ar: real := 0.99; -- reverse current gain
 quantity Vbe across Ibe through b to e; -- quantities of base-emmiter junction
 quantity Vbc across Ibc through b to c; -- quantities of base-collector
junction
begin
Ibe==i0*(exp(alpha*Vbe)-1) - ar*i0*(exp(alpha*Vbc)-1);
 -- base-emmiter current versus Vbe and Vbc; exp is defined outside
Ibc==i0*(exp(alpha*Vbc)-1) - af*i0*(exp(alpha*Vbe)-1);
 -- base-collector current
end architecture;

This architecture defines only static behavior and do not include capacitances. To include capacitances the following line are
inserted into model:

© 2001, Ridgetop Group, Inc. Page 5 of 15

architecture em_cap of bjt is
 constant i0: real := 1.e-12; -- saturation current of diode
 constant alpha: real := 35; -- exponent factor
 constant af: real := 0.99; -- forward current gain
 constant ar: real := 0.99; -- reverse current gain
 constant Cbe: real := 10.e-12;-- Cbe := 10pF
 constant Cbc: real := 7.e-12; -- Cbc := 10pF
 quantity Vbe across Ibe through b to e; -- quantities of base-emmiter junction
 quantity Vbc across Ibc through b to c; -- quantities of base-col junction
begin
 Ibe==i0*(exp(alpha*Vbe)-1) - ar*i0*(exp(alpha*Vbc)-1);
 -- base-emmiter current versus Vbe and Vbc; exp is defined outside
 Ibc==i0*(exp(alpha*Vbc)-1) - af*i0*(exp(alpha*Vbe)-1);
 -- base-collector current
 -- these two constant capacitances are defined earlier
 -- - in section "Lumped passive components"
 CBE: entity cap(eq) generic map (Cbe) port map (b, e);
 CBC: entity cap(eq) generic map (Cbc) port map (b, c);
end architecture;

In this case we have added separate components to the circuit: CBE, CBC. But, sure, it was possible to define currents of
branches via equations at this level:

...
quantity ic_bc, ic_be: electric;
begin
 Ibe == i0*(exp(alpha*Vbe)-1) -ar*i0*(exp(alpha*Vbc)-1) +ic_be;
 Ibc == i0*(exp(alpha*Vbc)-1) -af*i0*(exp(alpha*Vbe)-1) +ic_bc;
 ic_be'FD == Cbe*Vbe'FD* (math_j*2*math_pi*FREQUENCY());
 ic_bc'FD == Cbc*Vbc'FD* (math_j*2*math_pi*FREQUENCY());
end architecture;

Let us define BJT model with nonlinear capacitances. In this case it is better to operate with charges:

constant Vt: real := 0.02585; -- thermal voltage
constant tau: real:= 1.e-9; -- transition time
...
quantity Qbc, Qbe: electric;
quantity ic_be, ic_bc: electric;
begin
 Ibe == i0*(exp(alpha*Vbe)-1) -ar*i0*(exp(alpha*Vbc)-1) +ic_be;
 Ibc == i0*(exp(alpha*Vbc)-1) -af*i0*(exp(alpha*Vbe)-1) +ic_bc;
 ic_be'FD == Qbe'FD* (math_j*2*math_pi*FREQUENCY()); -- current via charge
 ic_bc'FD == Qbc'FD* (math_j*2*math_pi*FREQUENCY());
 Qbe == tau*Ibe -- diffusion component
 - 2*Cbe_junc*Vt**0.5*(Vt-Vbe)**0.5; -- junction component
 Qbe == ...; -- similar
end architecture;

Consider, that there are circular dependencies between Ibe and Qbe. It is allowed, so user can define dependencies between
variables in very flexible manner.

3.3 MESFET

MESFET model schematics may be considered like the following:

© 2001, Ridgetop Group, Inc. Page 6 of 15

Build VHDL-FD model for it. First, define entity:

entity mesfet is
 port (g,s,d: electric);
end entity mesfet;

Architecture will be the following:

architecture eq of mesfet is
 constant Cds: real:= 5.e-12; -- capacitances
 constant Cdg: real:= 1.e-12;
 constant Cgs0: real:=1.e-12;
 constant Is0: real :=1.e-12; -- Schottky junction saturation current
 constant alpha: real := 35; -- exponent
 constant beta: real :=0.05; -- A/V
 constant lambda: real := 0.002; -- g out
 constant aa: real := 2; -- for tanh
 constant Vth: real :=-1.0l -- V threshold
 constant Vt: real := 0.02585; -- thermal voltage
 quantity Vgs across Igs through g to s;
 quantity Vds across Ids through d to s;
 quantity Vgd across Igd through g to d;
 quantity Qgd;
begin
Ids == Is + Icds;
Igs == Icgs;
Igd == Icgd + is;
Icds'FD == math_j*2*math_pi*FREQUENCY()*Vds'FD*Cds;
Icgs'FD == math_j*2*math_pi*FREQUENCY()*Vgs'FD*Cgs;
Is == beta*(Vgs-Vth)*2**(1-lambda*Vds)*tanh(alpha*Vds);
is == Is0*(exp(alpha*Vgs)-1);
Qgd= - 2*Cbe0*Vt**0.5*(Vt-Vbe)**0.5; -- junction charge
Icgs’FD == Qgd’FD*math_j*2*math_pi*FREQUENCY(); -- and current

3.4 System-Level Components

VHDL-FD allows the user to define system-level components, not detailed very much. Here are a few examples of such
components with comments.

Signal source:

entity source is

© 2001, Ridgetop Group, Inc. Page 7 of 15

 generic (v, fr: real); port (quantity a : real);
end entity source;
architecture eq of source is
begin
 if (FREQUENCY() = fr) use
 a'FD==COMPLEX(v,0); -- signal of value v at frequency fr
 else
 a'FD==ZERO; -- or 0 if else
 end use;
end architecture;

Amplifier:

entity amp is
 generic (k: real); port (quantity a_in, a_out : real);
end entity amp;
architecture eq of amp is
begin
 a_in'FD*k==a_out'FD; -- trivial
end architecture;

Linear amplifier may be converted into nonlinear one:

entity nonlinrear_amp is
 generic (k1, k2, k3: real); port (quantity a_in, a_out : real);
end entity amp;
architecture eq of amp is
begin
 a_in*k1+a_in**2*k2+a_in**3*k3==a_out; -- nonlinear effects included
end architecture;

Low-pass filter:

entity lpfilter is
 generic (fr: real); port (quantity a_in, a_out : real);
end entity;
architecture eq of lpfilter is
begin
 if (FREQUENCY() <= fr) use
 a_in'FD==a_out'FD;
 else
 a_out'FD==ZERO;
 end use;
end architecture;

Band-pass filter:

entity bpfilter is
 generic (fl, fh: real); port (quantity a_in, a_out : real);
end entity;
architecture eq of bpfilter is
begin
 if (FREQUENCY() >= fl AND FREQUENCY() <= fh) use
 a_in'FD==a_out'FD;
 else
 a_out'FD==ZERO;
 end use;
end architecture;

High-pass filter and band-stop filter are similar.

Adder:

© 2001, Ridgetop Group, Inc. Page 8 of 15

entity adder is
 port (quantity a, b, o : real);
end entity;
architecture eq of adder is
begin
 o==a+b;
end architecture;

Multiplier

entity multiplier is
 port (quantity a, b, o : real);
end entity;
-- straightforward description of multiplier
architecture eq of multiplier is
begin
 o==a*b;
end architecture;
-- in most cases real multipliers are closer to the "quadrators"
architecture squared_sum of multiplier is
begin
 o==(a+b)**2;
end architecture;

Differentiator:

entity differentiator is
 port (quantity i, o : real);
end entity;
architecture eq of differentiator is
begin
 o'FD==i'FD*math_j*2*math_pi*FREQUENCY();
end architecture;

4 Rincon Library

4.1 Examination of current library

Ridgetop currently provides a library of pre-tested and calibrated models for use with the Rincon™ Harmonic Balance
Simulator. These include the following models: Resistor, capacitor, inductor, controlled sources (VCCS, CCVS, CCCS,
VCVS), independent sources (I, V, Power), ideal transmission line. Nonlinear components: Diode, Ebers-Moll BJT, MESFET.
System components: source, filters, amplifiers, adder, multiplier and differentiator.

4.2 Future Directions in Model Library Growth

In the future, Ridgetop has identified the need for additional models to be added to the basic library. The top candidates that
are being considered for the next release include:

Linear Components:
- Temperature dependent components;
- Electromagnetic components;
- Distributed linear components, including transmission lines (strip, microstrip, slot), microstrip stubs, and table-defined n-
poles.

Non-Linear Components:
- HEMT;
- p-i-n diode;
- Transformers;
- Also precisely characterized manufacturer's components that are built on the base BJT, MESFET, HEMT and p-i-n models.

System Level Components:
These include complex system-level block description models for developing higher level system designs.

© 2001, Ridgetop Group, Inc. Page 9 of 15

5 Simulation

Extensive modeling capabilities of VHDL-FD language are useless without effective simulation tools. Rincon offers not only a
proven approach to model building, but also simulates circuit as well. While Rincon's initial focus provides HB simulation
capabilities, other solvers will be available in the future that utilize this VHDL-FD based Model Library Approach.

5.1 System simulation

This example provides using the VHDL-AMS language and Rincon simulator to investigate system properties. Consider
receiver system front-end with the following topology:

Code of VHDL-FD model is the following:

entity receiver is
end entity receiver;
-- model of simple receiver front-end with pre-amplefier,
-- mixer, low-pass filter and IF amplifier. All components
-- are represented in system level
architecture system of receiver is
 quantity input, preamp, lo, mixed, filtered, load: real;
 constant SourceFrequency1 : real := 1.e9;
 constant SourceOrder1 : real := 3;
 constant SourceFrequency2 : real := 1.1e9;
 constant SourceOrder2 : real := 5;
 constant SpectrumShape : real :=2; --
 constant lowfr : real := 2*SourceFrequency2;
begin
RF: entity source(eq)
 generic map(1.e-6, SourceFrequency1) port map (input);
PREAMP: entity amp (eq)
 generic map (1000) port map (input, preamp);
LO: entity source(eq)
 generic map(100.e-3, SourceFrequency2) port map (lo);
MIXER: entity multiplier(eq2)
 port map (preamp, lo, mixed);
FILTER: entity lpfilter(eq)
 generic map (lowfr) port map(mixed, filtered);
IFAMP: entity amp (eq)
 generic map (10) port map (filtered, load);
end;

Simulating this system under 2-tone excitation gives us the following spectrum at the output:

© 2001, Ridgetop Group, Inc. Page 10 of 15

Main components of spectrum are: DC, 2*LO, IF (LO-RF), LO+RF, 2*RF.

5.2 Circuit simulation

Consider one more VHDL-FD example in circuit simulation. Gilbert cell mixer schematics:

Circuit description will be the following:

entity gilbert is end entity gilbert;
architecture componental of gilbert is
-- setting predefined constants

© 2001, Ridgetop Group, Inc. Page 11 of 15

 constant SourceFrequency1 : real := 3.0e6;
 constant SourceOrder1 : real := 3;
 constant SourceFrequency2 : real := 4.1e6;
 constant SourceOrder2 : real := 3;
 constant SpectrumShape : real :=2;
-- define terminals
 terminal t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,
 t12,t13, t14 : electric;
 quantity vin across t9 to t10;
 quantity vout across t5 to t6;
 quantity k: real;
begin
 E1: entity DCG (eq) generic map (1.8) port map (t14);
 E2: entity DCG (eq) generic map (6.0) port map (t8);
 E3: entity DCG (eq) generic map (8.0) port map (t7);
 R5: entity res(eq) generic map (100) port map (t8, t2);
 Q3: entity bjt(em1) port map (t3,t2,t5);
 Q4: entity bjt(em1) port map (t3,t1,t6);
 Q5: entity bjt(em1) port map (t4,t1,t5);
 Q6: entity bjt(em1) port map (t4,t2,t6);
 R6: entity res(eq) generic map (100) port map (t2, t8);
 LO: entity vsource(eq) generic map (1.0, SourceFrequency2)
 port map (t1, t2);
 R8: entity res(eq) generic map (1500) port map (t5, t7);
 R7: entity res(eq) generic map (1500) port map (t6, t7);
 R3: entity res(eq) generic map (1500) port map (t14, t9);
 Q3: entity bjt(em1) port map (t11,t9,t3);
 R1: entity res(eq) generic map (10) port map (t11, t13);
 R4: entity res(eq)
 generic map (1500) port map (t14, t10);
 Q3: entity bjt(em1) port map (t12,t10,t4);
 R2: entity res(eq) generic map (10) port map (t12, t13);
 Ra: entity res(eq) generic map (10000) port map (t13, ground);
 I1: entity DCI(eq) generic map (1.e-3) port map (t13, ground);
 RF: entity vsource(eq) generic map (10.e-3, SourceFrequency1) port
map (t9, t10);
-- single equation to "detect" output voltage
 k == vout;
end architecture;

This circuit has been simulated under different conditions (different biases and V4 and V5 voltages). Some results are
presented in [1]. Here is presented output spectrum - voltage between collectors of Q5 and Q6 BJTs.

© 2001, Ridgetop Group, Inc. Page 12 of 15

5.3 Mixed mode examples

One more example is intended to show the ability of VHDL-FD to simulate mixed system/circuit level projects. Consider 1-
stage transistor amplifier surrounding filters. From the front-end it is driven with some kind of periodic excitation, then it is
filtered, then amplified and filtered once more. Only amplifier will be represented with circuit, other parts will be represented
with system-level components.

Here s/v and v/s are "signal/voltage" and "voltage/signal" converters with internal output and input impedances respectively.
Their VHDL-FD code may look like:

entity sv_converter is
 generic (k, Ri: real);
 port (quantity inp: real;
 port outp: electrical);
end entity;
-- this entity converts abstract "inp" into voltage at port outp
architecture eq of sv_converter is
 quantity v across i through outp;
begin
 (v-k*inp)==i*Ri; -- e.m.f = k*inp; internal resisteance = Ri;
end architecture;

And voltage-signal converter:

entity vs_converter is
 generic (k, Ri: real);
 port (port inp: electrical;
 quantity outp: real);
end entity;
-- this entity converts input volatge into signal
architecture eq of vs_converter is
 quantity v across i through inp;
begin
 v==i*Ri; -- input resistance equation
 outp==k*v; -- define output value
end architecture;

Source with spectrum may be interesting too:

entity sp_source is
 generic (fr, val, decr: real);
 port (quantity out: real);
end entity sp_source;
architecture eq of sp_source is
 if(FREQUENCY() == fr) use
 out'FD == val;
 else if (FREQUENCY() == 2*fr) use
 out'FD == COMPLEX(val*decr,0); -- decr is less than 1
 else if (FREQUENCY() == 3*fr) use
 out'FD == COMPLEX(val*decr**2,0); -- third harmonic

© 2001, Ridgetop Group, Inc. Page 13 of 15

 else if (FREQUENCY() == 4*fr) use
 out'FD == COMPLEX(val*dect**3,0); -- fourth harmonic
 else
 out'FD == ZERO; -- ZERO is predefined
 end use;
end architecture;

As all components are defined already, the code will be:

entity mixed is end entity;
--
architecture comp of mixed is
 quantity src, f1, f2, osignal: real;
 terminal inp, dc, collector, outp: electrical;
 constant SourceFrequency1 : real := 1.0e6;
 constant SourceOrder1 : real := 10;
 constant SpectrumShape : real :=1;
 constant fr2: real :=2*SourceFrequency1;
 constant fr5: real :=5*SourceFrequency1;
begin
 SRC: entity sp_source(eq) generic map(SourceFrequency1, 1, 0.5) port
map(src);
 F1: entity lpfilter(eq) generic map(fr2) port map (src, f1);
 SV: entity sv_converter(eq) generic map(1,0.1) port map(f1, inp);
 R1: entity res(eq) generic map (6000) port map (dc, inp);
 R2: entity res(eq) generic map (420) port map (inp, ground);
 R3: entity res(eq) generic map (1000) port map (dc, collector);
 Q1: entity bjt(em1) port map (ground,inp,collector);
 C1: entity cap(eq) generic map(1.e-6) port map (collector,outp);
 DC: entity DCG (eq) generic map (10) port map (dc);
 VS: entity vs_converter(eq) generic map(1,100) port map(outp, f2);
 F2: entity lpfilter(eq) generic map(fr5) port map (f2, osignal);
end architecture;

Simulation gives the following results. Spectra at input and after filter1:

Spectra after capacitor and at the output:

© 2001, Ridgetop Group, Inc. Page 14 of 15

Waveform at the output:

This shows usefulness VHDL-FD modeling language as mixed system/circuit simulation tool.

6 Conclusion

Rincon represents a rigorous tool for frequency domain modeling and simulation. Together with the VHDL-FD language, it
allows modeling of both lumped nonlinear devices and distributed linear with complex behavior w.r.t. frequency. Flexible
approach does not limit designers and makes possible to simulate complex circuits and/or systems with different degree of
detail.

© 2001, Ridgetop Group, Inc. Page 15 of 15

7 References

[1] G. Serdyuk, D. Goodman "VHDL...." CriMiCo'2001
[2] VHDL-AMS Language Reference Manual, IEEE.

RINCON™ is a trademark of Ridgetop Group, Inc.

© 2002 by Ridgetop Group, Inc. All rights reserved.

