

Reliability Challenges in Through-Silicon Via (TSV)-Based Packaging

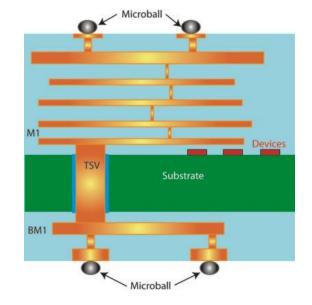
Andrew Levy

Ridgetop Group Inc.

August 13, 2014

Agenda

- Problem Statement
- Interconnect Reliability Background
- TSV BIST Detection Approaches
 - SJ BIST Overview
 - Precision Current Monitoring Overview
- Summary


Ridgetop Group

2

N.

TSV-based 2.5D & 3D ICs

- Stacking ICs with Through-Silicon Vias (TSVs)
 - Circuit density
 - Heterogeneous process integration
 - Speed/power
- Alternative to Pure "Moore's Law" Improvements
- 3D ICs use TSVs to stack directly on each other

N

- 2.5D ICs stack with an interposer to route signals
- Test methods are both new and extensions to existing

Ridgetop Group

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

Existing Approaches to 2.5D/3D IC Test

- "Known Good Die" \rightarrow "Pretty Good Die"
- Finding Defects Prior to Shipment
 - X-ray, Optical Inspection
 - Boundary Scan (IEEE 1149.1)
 - IEEE P1838, others
- Limited Focus
 - Opens & shorts
 - Primarily digital
 - Static / low speed operation
 - Thermal issues?... Assembly complexities?...
- ...Reliability = Performance Over Time

Ridgetop Group

N

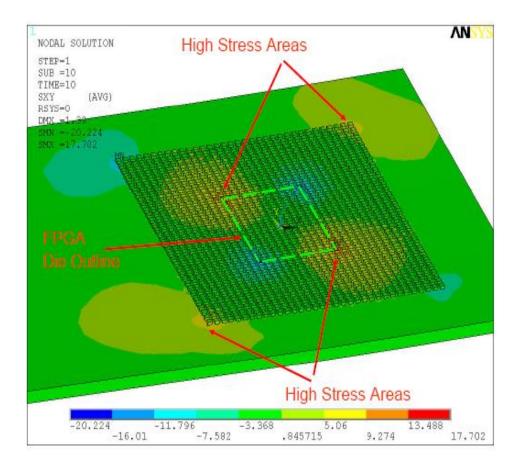
Intermittencies

- Reported electronic system problems in the field cannot be duplicated at the service point or in the lab
- "Three/Four-letter" words (CND, NTF, RTOK)
 - Could Not Duplicate (CND)
 - No Trouble Found (NTF)
 - Retest OK (RTOK)
- 50 to 80% of these CND/NTF/RTOK problem categories are reported by service personnel.
- Major culprits Solder joint intermittencies and NBTI effects in deep submicron ICs

Ridgetop Group Inc 3580 West Ina Road | Tu

West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

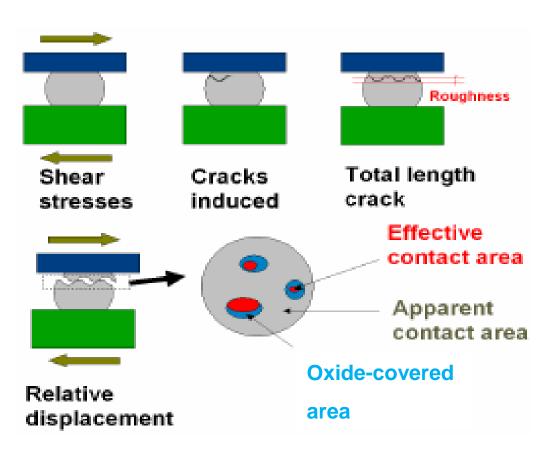
12


BGA Example: Cracks and Fractures

Defects: Location of Cracks/Fractures

- Corner pins likely to fail first
 - High stress areas, and corners of the package and die

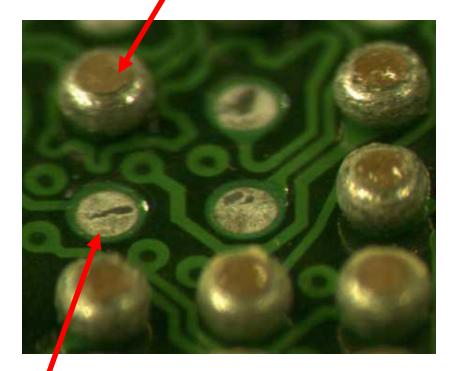
Ridgetop Group Inc

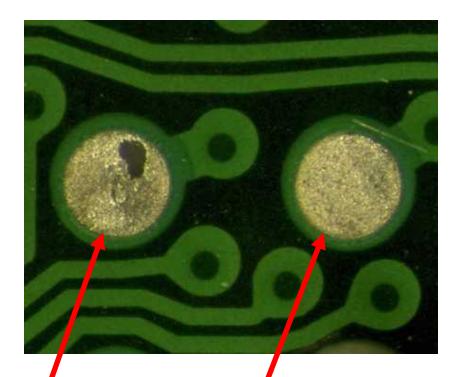

₩.

Mechanisms of Failure

- Fatigue fractures (cracks) are caused by thermo-mechanical stress/strain
- During periods of high stress, fractured bumps tend to momentarily open and cause intermittent faults of high resistance for periods of ns to µs
- Over time, contamination and oxidation films occur on the fractured faces: the effective contact area becomes smaller and smaller
- Transient opens can be detected by event detectors

Ridgetop Group


3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com


N.

Mechanics of Failure

HALT results - Pulled FPGA – Damaged Solder Balls

Undamaged

Damaged: Cracked

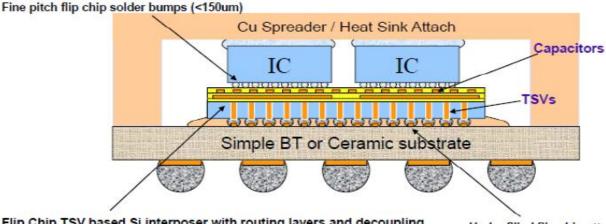
Cracked, not detectable

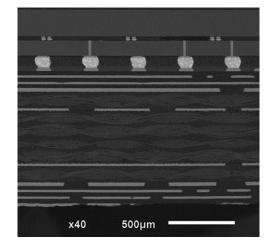
Fractured, detectable

Ridgetop Group Inc

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

9


₩.


Increased Complexity : 2.5D IC Interposer

Si-BT Flip Chip Interposer

Flip Chip TSV Silicon Interposer

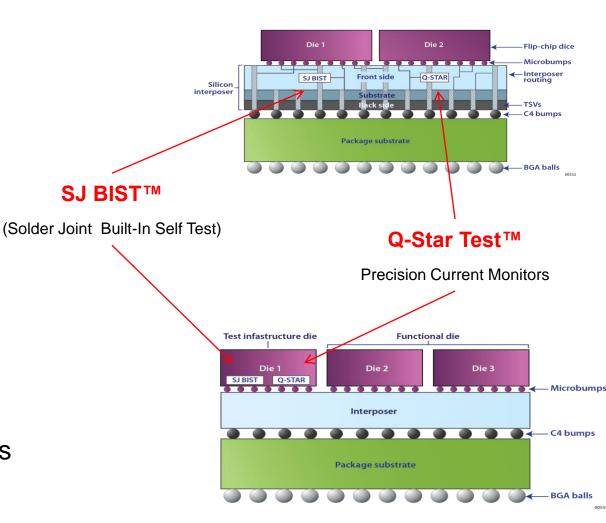
- TSV
- Interconnect layers on one side or both sides
 - Cu/Pi interconnect layers on one surface (5 um lines/spaces)
 - CMOS backend layers (1um lines and spaces) with Backside TSV
- Built in Capacitor (1500 nF/cm2 +)
- Solder Bump or Cu Pillar on the backside
- Smallest (Chip Size) Interposer for Cost and Reliability

Flip Chip TSV based Si interposer with routing layers and decoupling capacitors (1500nf/cm2 +)

Under filled flip chip attach

2.5D interconnection challenges

- Undesired side effects of 2.5D ICs
 - Increased density → increased heat → degradation and defects
 - Qualification/testing is very difficult and expensive
- Confidence in 2.5D IC interconnect reliability must be raised
- Techniques for anticipating failure do not currently exist
 - Boundary scan standards for assembly testing are emerging but...
 - Boundary scan doesn't address active *in situ* reliability issues
- Net effect on adopting 2.5D IC technology:
 - High level of preventive maintenance whenever possible
 - Avoidance when such maintenance is not possible, practical, or economical



Ridgetop Group

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

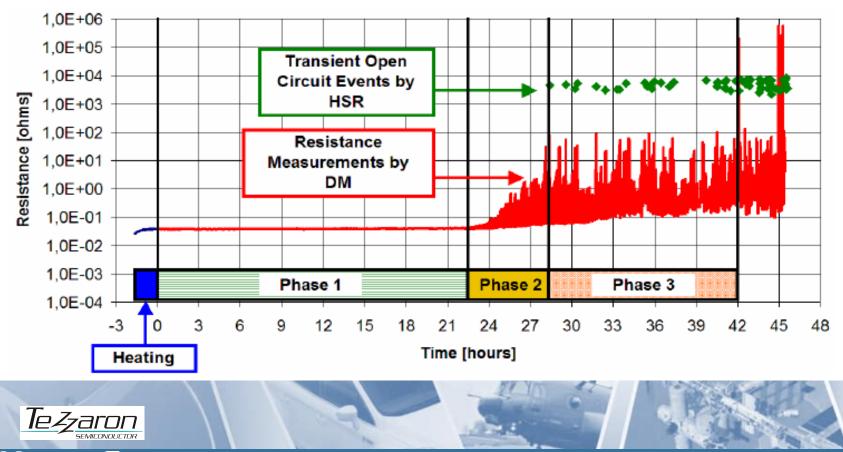
Ridgetop 2.5D/3D IC Reliability System

- Proven BIST methodologies
- Real-time monitoring of interconnection integrity
 - Monitors degradation
 - Warns of impending failure (prognostic "canary cell")
 - Detects and identifies intermittencies
- Covers both analog and digital signals
- Two alternate approaches (discussed in detail later)

Through-Silicon Via Built-In Self-Test (TSV BIST) Detection Approaches

SJ BIST Q-Star Test PG-Mon

And, by the way... TSV BIST monitors apply to other stacked die or multi-chip packaging approaches as well



3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

Intermittent Faults in Components

- Faults are intermittent: confirmed by CAVE, Auburn Univ., German automobile manufacturer
 - Occur during periods of increasing strain
 - Multiple occurrences per cycle
 - Industry standard: 200 ohms +, 200 ns +

Ridgetop Group

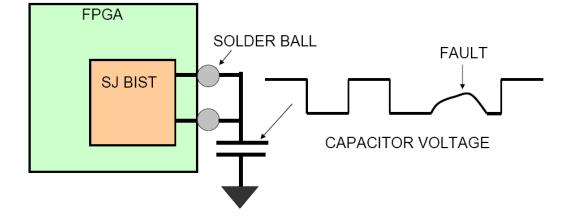
3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

14

₩.

What is SJ BIST?

- SJ BIST = Solder Joint Built-in Self-Test
 - Original solution enabling the verification and validation of solder joint interconnect reliability
 - Originally developed for FPGA-BGA applications
 - Can be applied to validate the integrity and reliability of any type of interconnection
 - Can be instantiated via Verilog or VHDL for FPGAs
 - Software Executable version for CPUs

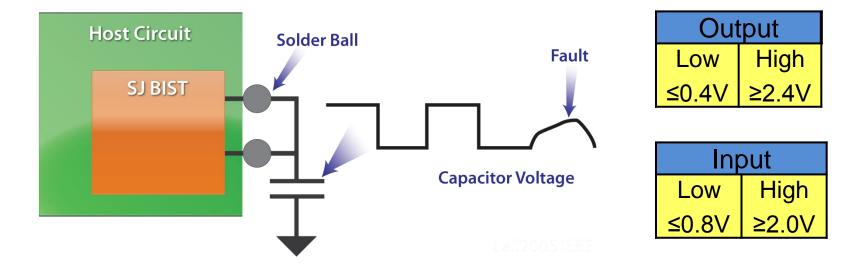

Ridgetop Group Inc

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

N

SJ BIST Implementation – Fault Sensor

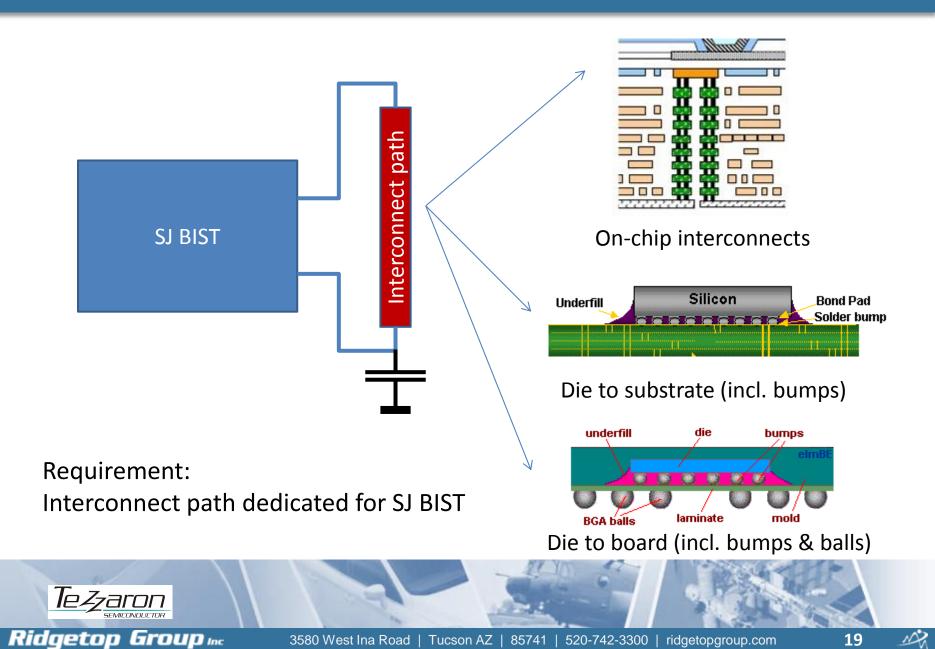
- Verilog firmware core
 - Each core tests two I/O pins
 - Pins are externally wired together
 - Small capacitor connected to the two pins


	1		3		5		7		9		11		13		15		17	_	19		21		23		25		27		29		31		33			-
		2		4		6		8		10		12		14		16		18		20		22		24		26		28		30		32		34		
_		_	_	_	_	_	_	_		_	_	_	_	_	_	_		_	-	_	_	_	_		_	_	_	_		_	_	_	_	_	-	_
A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
в	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	
С	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	
D																			0																4	
Е																			0																5	
F																			0																6	
G	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	
н																			0																8	
J		-	-	-	_	-	-	-	-	-	-	_	-	-	-	-	-	_	0	Ξ.	-	-	-	-	-	-	_	-	-	-	-	_	-		9	
к	-	-	-	-	_	-	-	-	-	-	-	_	-	-	-	-	-	-	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10	
L	-																		0																11	
м				-		_	-				-		_			_		_	0	_			_		_		_	-		-	-	_	-		12	
N																			0																13	
Р																			0																14	
R																			0																15	
Т	_																		0																16	
U																			0																17	
V																			0																18	
W																			0																19	
Y																			0																20	
AA																			0																2	
AB						_	-						_			_		_	0	_			_		-			-		-		_			2	
AC																			0																2	
AD																			0																24	
AE																			0																	
AF																			0																26	
AG																			0																2	
AH																			0																22	
AJ		_	_	_	_	_	_	_	_	_	_	_	-	_	_	-	_	_	0	_	_	_	_	_	_	_	_	_	-	-	_	_	-		30	
AL																			0																31	
AL																			0																3	
AM																			0																3	
AN																			ŏ																34	
AP		Ľ	2	3	<u> </u>	2	2	Ľ	Ľ	Ľ	Ľ	3	<u> </u>	3	2	_	Ľ	-	3	9	2	Ľ	Ľ	Ľ	2	Ľ	Ľ	2	2	<u> </u>	Ľ	2	2	Ľ.,	3	-

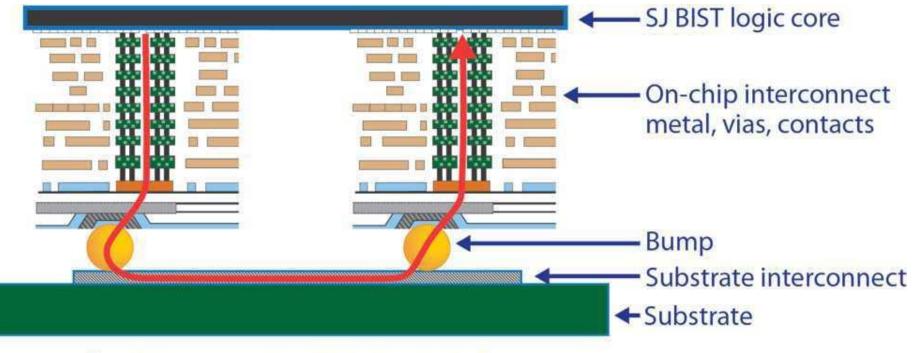
TOP VIEW

SJ BIST Results

LVTTL – Low Voltage TTL

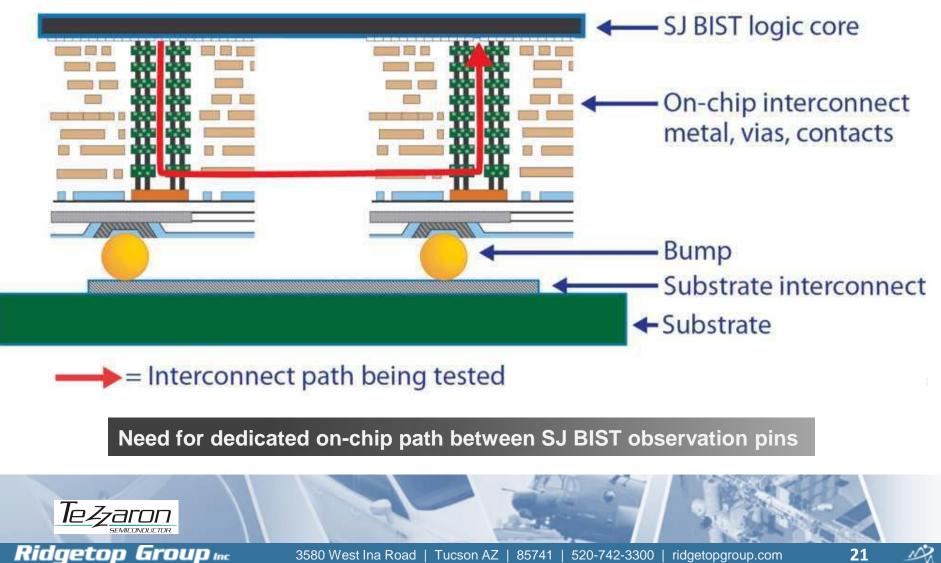

SJ BIST Background

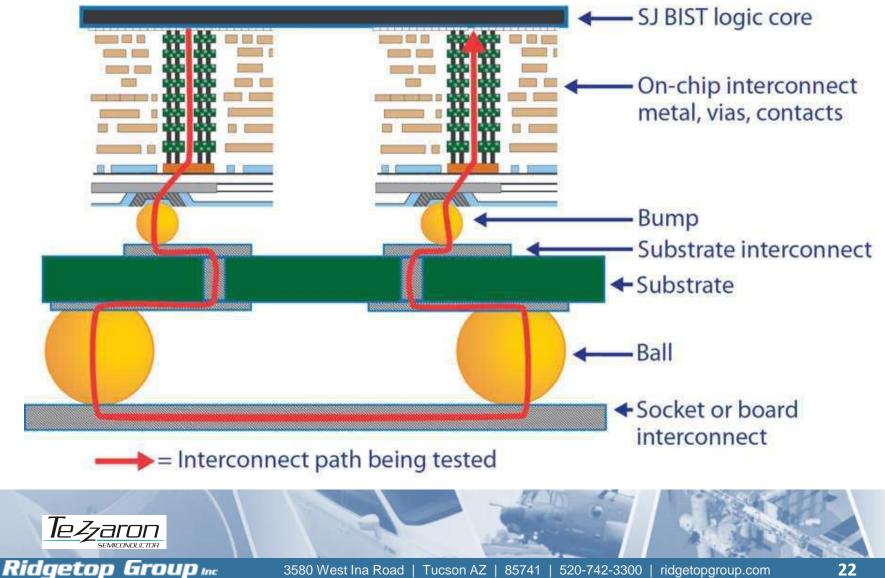
- Heritage
 - In situ interconnect reliability testing of high pin-count FPGAs in BGA packages
 - Originally developed for DoD & NASA space applications
- Proven and reliable
 - Easy to deploy
 - Highly sensitive to intermittencies and faults
 Tunable for different operating frequencies
 - No "false positive" flags
- Extended to high density digital interconnection environment, i.e., 2.5D/3D ICs



Ridgetop Group Inc

NZ,

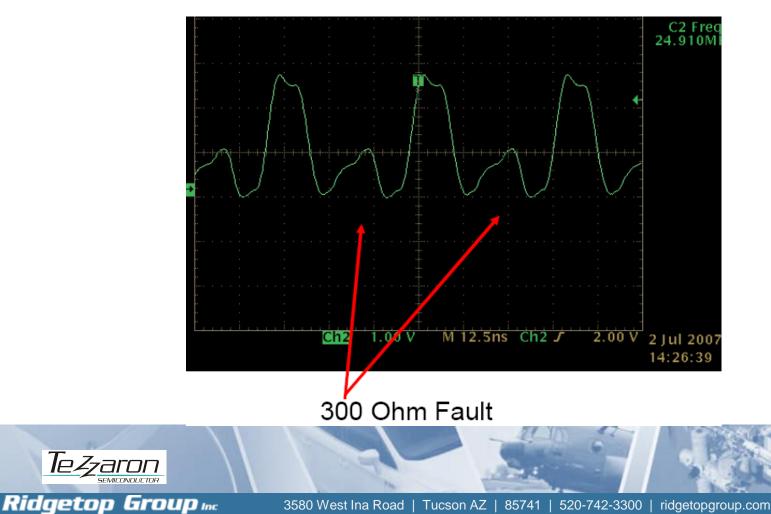

Testing Die to Substrate



Testing On-chip Interconnect

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

Testing Die to Board



22

₩.

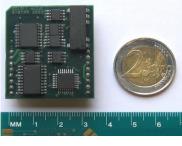
SJ BIST Application Results

- Independent test results by German automotive firm
 - Confirmed the same results as obtained by Ridgetop Group
 - No false alarms

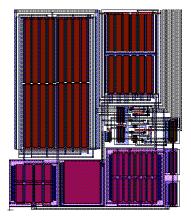
23

₩.

Q-Star Test PG-Mon Precision Current Measurement Approach


Ridgetop Group Inc.

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

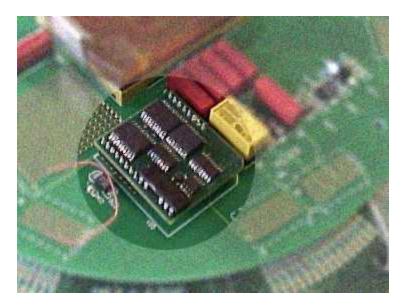

Precision Current Measurements

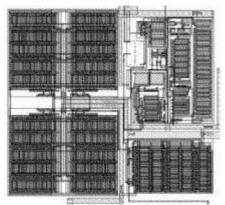
- Q-Star Test current monitors
 - Modules
 - →Packaged part testing, lab characterization, failure analysis

Q-Star QD-1011 monitor

- \rightarrow I_{DDQ}, I_{DDT}, I_{SSQ}, power profiling, etc.
- On-chip monitors
 - →PG-Mon: validates power, ground, and other connections
 - →T-Mon: monitors transient currents

Q-Star PG-Mon



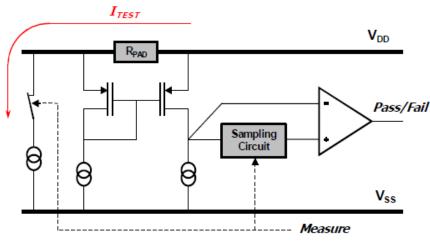

Ridgetop Group Inc

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

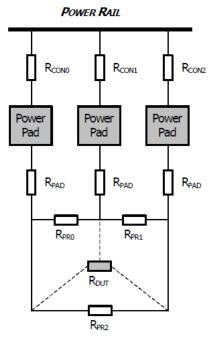
Precision Current Measurement : Q-Star Test

- I_{DDQ}, I_{DDT}, I_{SSQ} and other precision picoamp level current measurement instruments for characterization and test
- On-board modules and on-chip sensors
- Test and DFT consulting and training services
- 70 semiconductor companies and 800 instruments installed
- Developed by Ridgetop Europe

Ridgetop Group Inc.


3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

26

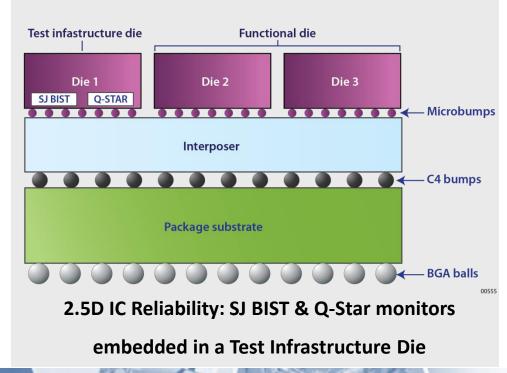

PG-Mon Application 1

- On-chip I/O and power/ground connection verification
- Highly sensitive $(1.5 4\Omega)$, non-intrusive observation of signals

Example:

VDD Monitor Block Schematic

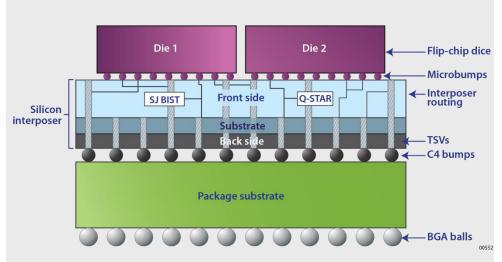
Example:


IC Power Distribution Network

Reliability Monitoring

2.5D IC Reliability: Test Infrastructure Die

- "Test Infrastructure" die: Connects to strategic traces routed through the interposer
 - Most critical functionality
 - Most sensitive to degradation (e.g., corners or centers of Die 2 or Die 3)
 - Can monitor many signals
- SJ BIST/Q-Star IP embedded in Test Infrastructure die
- Advantages
 - Minimizes interposer overhead
 - Low cost IC
 - Upgrades are simple
- Disadvantages
 - Extra interposer real estate
 - Distance from some signals

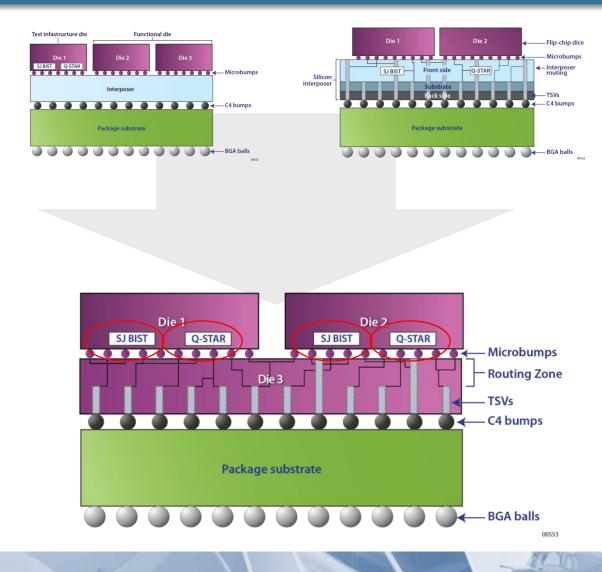

Ridgetop Group

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

2.5D IC Reliability: Interposer-hosted

- Directly hosted on Interposer: Connects to strategic traces routed through the interposer
 - Most critical functionality
 - Most sensitive to degradation (e.g., corners or centers of Die 2 or Die 3)
 - Can monitor many signals
- SJ BIST/Q-Star IP embedded in Silicon Interposer
- Advantages
 - Minimizes interposer overhead
 - Monitors near key signals
- Disadvantages
 - Interposer cost is higher
 - Signal routing may be trickier

2.5D IC Reliability: SJ BIST & Q-Star monitors embedded in Silicon Interposer



Ridgetop Group

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

 \sim

From 2.5D IC to 3D IC Reliability Monitoring

- 3D IC migration: Embed SJ BIST / PG-Mon IP in TSVenabled ICs
- Required when no interposer present Highest quality monitoring
- Reduces cost and overhead
- Standardized approach for broadest applicability

30

N.

Summary

- 2.5D / 3D IC technologies pose new challenges
- Reliability assurance requires more than traditional test
- Real-time TSV BIST monitors...
 - Detect intermittencies
 - Identify degradation before failure
 - Are non-intrusive

Ridgetop Group Inc.

N

About Ridgetop Group, Inc.

- Incorporated in 2000, and headquartered in Tucson, AZ. Ridgetop Europe established in 2010 in Belgium.
- Microelectronic Design and Test Solutions:
 - SJ BIST[™] Based Test Solutions
 - ProChek[™] Semiconductor Characterization System
 - Q-Star Test[™] Precision Current Measurement Instruments
 - PDKChek[™] In-Situ Test Structures
 - ISO:9001/AS9100C-compliant Design and Integration Services
- Strong market position with commercial and government customers in USA, Canada, Europe, and Asia

Ridgetop Group Facilities in Tucson, AZ

Ridgetop Europe Facilities in Brugge, Belgium

Ridgetop Group

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

32

NZ,

Contact Information

Ridgetop Group Inc.

Andrew Levy VP Business Development

<u>alevy@RidgetopGroup.com</u> (office) +1 520-742-3300 x115 (mobile) +1 503-320-5466

3580 West Ina Road Tucson, AZ 85741

Ridgetop Group

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

33

M≩

Upcoming Webinars

Торіс	Date	Time			
Reliable Electronics? Precise Current Measurements May Tell You Otherwise	September 9, 2014	8:00 – 9:00 AM PDT			
Intermittent Fault Detection in Circuit Boards and Connectors	October 8, 2014	8:00 – 9:00 AM PDT			

For more information about Ridgetop Group webinars, email us at information@ridgetopgroup.com

Ridgetop Group Inc

3580 West Ina Road | Tucson AZ | 85741 | 520-742-3300 | ridgetopgroup.com

11 k

Questions?

- Slides and recording of the webinar will be available shortly via an e-mail from Ridgetop
- E-mail follow-up questions & comments to
 - Tezzaron: David Chapman, <u>dchapman@tezzaron.com</u>
 - Ridgetop: Andrew Levy, <u>alevy@ridgetopgroup.com</u>
- Please fill out our brief feedback survey at: <u>https://www.surveymonkey.com/s/FDJ9MQH</u>

Thanks for your time and interest!

Ridgetop Group

N