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SUMMARY

There are tremendous economic and technical benefits to short-
ening battery test periods through robust predictive methods.
Accurate long-term forecasting of battery life enables proactive
planning of battery management (e.g., cell replacements) and pre-
emptive actions to modify operating conditions to improve safety
and life. The ever-evolving landscape of battery materials and appli-
cations ensure an abiding need for early capture of aging mecha-
nisms. Herein we report on accelerated determination of battery
aging mechanisms together with prediction of future capacity loss.
Sigmoidal rate expressions (SREs) are used as diagnostic and predic-
tive engines to evaluate aging mechanisms at play. We demonstrate
three methods by which SRE parameters are early assessed. Overall
results indicate that for cases dominated by loss of lithium inventory
we can predict end-of-test capacity loss using less than three weeks
of data. In many cases, predictions are within 5%–10% relative error
and to within 1%–2% absolute error of observed performance.

INTRODUCTION

Battery energy storage (BES) is undergoing prolific growth into new areas and

within existing areas such as vehicles and stationary scenarios. Over the next

decade, there is planned a massive transition to electrification of applications

that would otherwise be powered by fossil fuels.6 This move carries with it the

need to jointly increase deployment of energy storage technologies and improve

battery management with near real-time battery health diagnostics and life predic-

tions. As such, rapid technology validation and intelligent battery management will

become an essential element in the ever growing market for electric vehicles and

stationary energy storage systems, with the ultimate goal of zero emission in the

foreseeable future. A preferred battery management system (BMS) would not

only enable battery performance to be continuously monitored but would also

allow the prediction of battery aging trends and ultimate lifetime, as well as fail-

ures during anticipated modes of operation. A thoughtful understanding and an

accurate prediction will extend battery lifetime and increase safety by avoiding

detrimental degradation. From the viewpoint of battery research and development

(R&D), this management will provide insights into battery design and operation

strategies, further improving the robustness and reliability of batteries in an accel-

erated development cycle. Information gathered from BMSs and coupled with

physics-based models can also be leveraged to determine if batteries that have

aged past their first application can be repurposed into a second application or

undergo materials recycling. Therefore, high-fidelity battery life predictions have
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Figure 1. Process flow diagram for lithium-ion battery aging

This diagram shows aging contributions to lithium-ion cells as they relate to LLI and LAM and interconnections thereof. Note that LMD is included as a

contributor to LLI.
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become a technical and economic necessity for BES to become a thriving compo-

nent of our energy future.

The primary target for this study is an accelerated determination of battery aging for

cells which undergo extreme fast charging (XFC), wherein there can be a combina-

tion of foremost mechanisms under three broad ‘‘aging modes’’: loss of lithium in-

ventory (LLI) and loss of active materials (LAM) as segregated between the positive

and negative electrodes (LAMPE and LAMNE). The presence of fast charge also can

cause lithium metal plating or deposition (LMD), which we generally place under

the LLI category, as LMD is largely a surface-driven process that occurs relatively

early in battery life.7–10 We seek not only to diagnose these various mechanisms

but also to predict their emergence and growth over extended cycling and

time, while also predicting other conventional metrics of aging (e.g., capacity

loss). Without a comprehensive understanding of the root causes of degradation,

battery lifetime prediction remains a ‘‘black box,’’ leaving battery developers and

end users with little guidance for cell chemistry improvements and corrective

strategies to decrease battery aging.

Figure 1 gives an overview of aging consequences for lithium-ion cells, where con-

nections are drawn between LLI and LAMoutcomes. This figure follows a logical pro-

gression of consequences under an electrochemical batch reactor scenario, given

the materials and typical use conditions for lithium-ion cells. The description given

here for Figure 1 is complementary to the LLI and LAM discussion by Gering.11 It

is seen that surface-to-electrolyte interphase (SEI) formation and LMD are primary

sources of LLI. Again, these are largely surface-centric processes that occur relatively

early in battery aging. Electrode surface and pore blockage can arise from initial

incomplete surface wetting by the electrolyte, continued SEI film formation, gas for-

mation, and also the occurrence of LMD. Pore blockage can lead to trapped active

material that no longer ionically communicates with the rest of the cell, resulting in

one category of LAM. Progression of surface and pore blockage leads to a cascading

set of consequences that promote further aging in terms of LLI and LAM, affecting
2 Cell Reports Physical Science 3, 101023, September 21, 2022
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both electrodes. The cascade sequence is estimated through higher local current

densities, larger local concentration gradients with related polarization, higher local

voltage gradients, and particle cracking or separation. These contributions cause

increased stress on materials due to being driven further from equilibrium (at rest)

states. It is noted that cathode particle cracking and formation of LMD may well

initiate further surface passivation reactions with the electrolyte. Another outcome

from this overall aging landscape is that the negative-to-positive ratio can be shifted

away from the original specification, where the direction of shift will reveal which

electrode is more profoundly aged. To conclude, Figure 1 gives a concise view of

aging processes within lithium-ion cells, with inter-connections noted. When LLI,

LAM, and LMD ‘‘mechanisms’’ are mentioned herein, these terms refer to all contrib-

uting processes to LLI, LAM, and LMD. Such net contributions to each mechanism

are the focus of our work, and not the particular sub-processes (e.g., individual sur-

face reactions for LLI).

Within our consideration of battery aging, we recognize that the following may have

a profound influence on aging consequences and the evaluation thereof: condition

dependence (path dependence), cell chemistry dependence, and effects from irre-

versible versus reversible performance losses (polarization). Path dependence will

emerge as the operational and environmental conditions of use vary over time.

Cell chemistry dependence will reflect the unique aging response to stress factors

on the basis of any of several material-specific parameters in the electrodes, electro-

lyte, or separator. Last, it is important to segregate irreversible and reversible causes

of diminished state of health, such as accounting for polarization effects when

testing a cell for available capacity.

In previous works, we have showcased frameworks that allow specific aging modes,

namely LLI and LAM, to be identified and classified on the basis of the electrochem-

ical data collected during battery life cycles. Multiple electrochemical signatures

such as capacity loss, voltage response, and increment capacity (IC) curves can

be combined together into a machine learning framework for aging classifica-

tion.9,12–15 By combining IC analysis and deep learning together, the percentages

of aging in the cathode or anode can be quickly quantified. These tools are a collec-

tive complement to foundational work done to establish SRE as a viable means to

diagnose and predict battery aging mechanisms.11

Herein we deploy SRE as compact, robust mathematical forms that contain three var-

iables each (a, b, M), as discussed in Figure 2, that capture the thermodynamic and

kinetic ‘‘thumbprint’’ of the mechanism progression within the context of a batch

reactor scenario.11 As battery cells transfer only current and heat while the materials

remain inside, they qualify as batch reactors and SRE can be applied to describe the

aging thereof. Per Figure 2, the SRE parameters (a, b, M) are physical parameters

representing chemical kinetic and thermodynamic terms (rate constant, order of re-

action, and maximum extent of degradation) for a given mechanism. Thus, a given

set of (a, b, M) represents a particular mechanism in response to a set of stress fac-

tors, and hence will be unique as related to a given cell chemistry. These terms and

related mathematics are discussed at length below and in Note S1 and Note S2.

Other works have recently used different ML architectures and related methods for

early life prediction.16–18 Uniqueness of our approach is found in the numerical

methods by which we accelerate the identification and prediction of failure modes

and performance by determining the (a, b, M) sets and assign them to particular ag-

ing mechanisms such as LLI versus LAM. We also derive uniqueness from translation
Cell Reports Physical Science 3, 101023, September 21, 2022 3



Figure 2. Description of SRE parameters as applied to battery aging analyses

Values of these parameters reveal chemical kinetic and thermodynamic metrics tied to the contributing aging mechanisms. See also Note S1 for further

explanation.
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between data types (daily cycle-by-cycle versus reference performance tests [RPTs])

to infer SRE (a, b, M) parameters for use within a ML framework. Collectively, these

elements enable early forecasting of aging outcomes (type of mechanism and extent

of aging) far ahead of actual end-of-life test results. A related benefit is the reduced

cost associated with battery life testing, as our accelerated prediction methods can

significantly decrease testing time.

On the basis of our SRE foundation, we investigate three separate approaches to

accelerated life prediction that require only modest amounts of early data such as

capacity loss: (1) a predictive curve-fitting (CF) technique, (2) deep learning (DL)

paired with a Monte Carlo method, and (3) machine learning (ML). We consider

robustness and the applicability of each as applied to various aging trends as ex-

pressed in capacity loss data and gain insights on method accuracy, resilience and

practical limitations. Figure 3 summarizes inputs, outputs, and distinct features for

these three methods, showing that data requirements generally increase with a

move toward ML. We conclude that data-rich applications can be well suited for

ML treatments, yet data-sparse scenarios point to using predictive curve-fitting or

deep learning methods. In terms of computing demand, the predictive curve-fitting

approach requires the least amount of computing time per dataset.
RESULTS

Examples of SRE applied to battery life data

As a demonstration of SRE utility, Figure 4 has a collection of plots that compare ca-

pacity loss data (symbols) to SRE regression results (solid or dashed curves) on the

basis of full RPT data. Herein we see cases with

� LLI dominance (e.g., P462 cells 9 and 12, Figures 4F and 4E);

� LLI plus a secondary mechanism, most likely LAM (e.g., P462 cells 8 and 11,

Figures 4C and 4D); and

� LMD as part of the LLI (P462 cells 4, 5, 6, and 7, Figures 4A and 4B).

From these cases, we see that the values of (a, b, M) vary according to aging trends

seen in the test data, here frommeasurements of capacity at the RPT condition of full

C/20 discharges. In cases in which there are two mechanisms, there are two sets of
4 Cell Reports Physical Science 3, 101023, September 21, 2022



Figure 3. Comparison of predictive methods used for this work

The relative need for experimental data is highlighted, where DL and CF are well suited for sparse data and cell-wise cases, while the ML method

requires more data to facilitate populating the training sets. The nature and breadth of datasets will determine which method should be applied for

predictive aging analysis.
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SRE parameters denoted by (a, b, M) and (c, d, N). Regression fidelity is high,

achieving R2 values of at least 0.994. The SRE parameters reveal aging mechanisms

that are more surface driven (b < 1.0) and those that are tied to 3-dimensional pro-

cesses (b R 2). For the sake of demonstration, the regressed LLI and LAM contribu-

tions are plotted for cell 8 in Figure 4C. As expected, LLI dominates as an early aging

mechanism, with LAMemerging later in time to eventually dominate the net capacity

loss. The progression and relative magnitudes of LLI and LAM are informative about

the sensitivity of the cell chemistry to the chosen operating conditions and could be

used to advise cell design modifications and corrective actions taken by a BMS.
Summary of accelerated SRE parameter estimations for RPT-based capacity

loss

Three different approaches involving DL, CF, and ML were used to predict capacity

fade in P462, P492, and P533 cells. Attributes of these cells and the nature of their

cycle-life testing are summarized in Note S3. Figure 5 summarizes outcomes for

end-of-test (EOT) capacity loss prediction errors, while Figure 6 shows similar type

results for the LLI contribution. Note that Figures 5 and 6 account for absolute pre-

diction error between model predictions and experimental data, while Figures S1

and S2 account for relative error. Because of the limited RPT datasets, one additional

RPT (at 225 cycles) was used in CF prediction for P492, whereas the other two

approaches used RPT cycling data from 0 through 125 cycles. The accuracy of the

prediction was measured by the difference between capacity fade percentage

from the experiment and the predicted percentage at the EOT at 450 or 425 cycles.

Compared with the prediction performance in P492 and P533, prediction error in

P462 is relatively high; average prediction errors using DL, CF, and ML are 2.91%,

2.81%, and 1.72%, respectively. Higher prediction error is caused mainly by reliance

on a single mechanism-based SRE, which assumes that a single agingmode (i.e., LLI)

dominates capacity fade. On the basis of our previous results, most cells in P462,

P492, and P533 showed LLI-dominant aging cases.14 However, the SRE diagnostic

analyses tell us that some cells in P462 and P492 show clear cases of LLI + LAM aging

and they require two SRE equations to include both, as shown in Figures 4C and 4D.

In DL and CF, only early stage cycling data are used, wherein the effect of LAM is

barely observed, thus it is difficult to predict capacity fade accurately because of

development of a second mechanism (i.e., LAM) at the later stages of cycling. On
Cell Reports Physical Science 3, 101023, September 21, 2022 5
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Figure 4. Examples of SRE regression outcomes from P462 cells

(A–F) In most cases, the aging is dominated by a single contribution such as LLI (A, B, E, and F), while other cases show a clear indication of a second

mechanism presumed to be LAM (C and D), where both (a, b, M) and (c, d, N) parameters are shown. (C) Constituent contributions from LLI and LAM for

the sake of demonstration.
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the other hand, the ML approach shows relatively higher prediction accuracy

because it is a supervised learning approach and training datasets include the life in-

formation at late cycles as the training targets. Moreover, according to the previous

studies from our group, clear evidence of LMD was present in more than half of the

cells in P462.15 Thus, complexity and uncertainty from LMD also causes relatively

higher prediction error in P462.

It is also observed that there is a strong relationship between change in capacity

at 125 cycles and prediction accuracy at EOT (Figure 5). Change in capacity is

calculated by the increased capacity fade with respect to the capacity fade at
6 Cell Reports Physical Science 3, 101023, September 21, 2022
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Figure 5. Absolute error of capacity prediction

(A–F) Values are determined at end of test from different methods for (A) P462, (B) P492, and (C) P533. (A–C) Individual cells and (D–F) errors

according to different charging protocols. Errors are lowest for the cells with thinner electrodes (P492) while cells with thicker electrodes (e.g., P462)

have more cell-to-cell variability, presumably caused in part by inconsistent or inadequate wetting of electrode laminates by electrolyte. ML

predictions show increased error for P533 (C and F) because training sets do not have adequate coverage of the intermittent-type charging

conditions.
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previous RPT: ½ðCapn
RPT � Capn+1

RPT Þ =Capn
RPT �3100 ð%Þ (Capnth RPT – Cap[n + 1]th

RPT)/Capnth RPT 3 100 (%). For example, the change in the capacity of cell 11 in

P462 is 69% at the sixth RPT, which corresponds to 125 cycles, and the highest pre-

diction error is measured. On the other hand, the averaged change in capacity in

P492 and P533 are relatively low, at 24% and 15%. In these cells, DL and CF predict

capacity at EOT very accurately as shown in Figures 5 and S1. Despite the low

change in capacity in P533, ML exhibits relatively larger error, 4.63%, because the

ML model has been trained by the cells in P462 and P492 because of a limited total

number of testing cells in P533. From this, performance of ML prediction is highly

affected by training datasets, whereas DL and CF prediction accuracy are more

affected by change in capacity.
Cell Reports Physical Science 3, 101023, September 21, 2022 7
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Figure 6. Absolute error of LLI prediction

(A–F) Values are determined at end of test from different methods for (A) P462, (B) P492, and (C) P533. (A–C) Individual cells and (D–F) errors according to

different charging protocols. As seen in Figure 5, errors are lowest for the cells with thinner electrodes (P492), while cells with thicker electrodes (e.g.,

P462) have more cell-to-cell variability, presumably caused in part by inconsistent or inadequate wetting of electrode laminates by electrolyte. ML

predictions show increased error for P533 (C and F) because training sets do not have adequate coverage of the intermittent-type charging conditions.
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Our three approaches are also used to predict LLI at EOT on the basis of 125 cycles

of data, as seen in Figures 6 and S2. In this study, supporting LLI data were obtained

fromDL incremental capacity (DL-IC) analysis.14 LLI prediction error is similar with ca-

pacity prediction error seen in Figures 5 and S1, as LLI comprises most of the capac-

ity loss in cells of P462, P492, and P533. Therefore, trends of LLI are similar to that of

capacity fade during aging cycles. As observed in capacity fade prediction, LLI pre-

diction accuracy was relatively low in the LLI + LAM aging cells.

In this study, capacity fade and LLI at EOT are successfully predicted under different

cycling conditions by using only the first 25%–30% of data over time (approximately

the first 125–150 cycles) with less than 5% absolute prediction error. Combining
8 Cell Reports Physical Science 3, 101023, September 21, 2022
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Figure 7. Cell-wise map of SRE parameters, P492

(A–C) This summary of SRE regression parameters covers LLI (a, b, M) and LAM (c, d, N)

contributions, showing the relationship between cells and their charge conditions (colored boxes).

(A) Rate constant terms, (B) orders of reaction, and (C) maximum extents of degradation under the

LLI and LAM routes.
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accelerated prediction methods with DL-IC framework will add to the robustness

and expandability. Early aging modes that are classified and quantified in DL-IC

framework are used to predict the capacity and aging modes at the later stage of

cycling data. This will support timely decisions and actions to ensure battery safety

and longer life and eventually reduce battery development effort, time, and cost.

Examples of SRE results for full RPT sets

In addition to accelerated determination of SRE parameters, we recognize the

benefit from using multiple SRE to describe full-life aging trends from historical

data. In many cases, two SREs are able to accurately render the aging trends for

LLI + LAM, while three SREs might be required for cases in which there is an addi-

tional early-life mechanism involving slow lithium release from lithium-enriched cath-

ode stoichiometries. In Figure 7, cell-wise aging from P492 was used as a basis to

obtain regression outcomes for the (a, b, M) and (c, d, N) parameters for LLI and

LAM, respectively. Figure 7A shows results for the rate constants a and c, Figure 7B

shows the reaction order terms b and d, and Figure 7C covers the mechanism

maximum extent terms M and N. Colored boxes are used to indicate the charge

rate used during testing for each subgroup of cells. The parameter plots are gener-

ally sensitive to test conditions, providing a good basis for diagnostic aging analysis,

as well as predictive (extrapolative) analysis. In Figure 7B it is seen that the b term is

consistently below 1.0, indicating that the related aging mechanism is indeed exhib-

iting kinetics related to surface-driven processes as would produce LLI and LMD,

while the d term value is about 2.0 for most P492 cells, with some values higher

and lower. Values of d in proximity of 2.0 are indicative of aging processes in

3-dimensional space, whereas values that are appreciably greater than 2.0 may indi-

cate an aspect of damage to active materials in addition to normal aging toward

LAM. Another interesting outcome is how parameters respond to the transition

from 8 C charging to 9 C, as seen most clearly in Figures 7B and 7C, which suggests

the initiation of further LLI possibly because of LMD or electrolyte passivation on sur-

faces of freshly fractured electrode particles.

ML outcomes

For the data-driven estimation of the RPT responses (i.e., capacity, LLI, and LAM), the

P462 and P492 cell data were used as the training/test sets, while P533 was held out

as a validation set. This resulted in a total of 29 samples to train and test the random

forest model and 3 samples for validation with a different charging protocol.

Because of discrepancies of RPT schedules, the end-of-life (EOL) RPT responses

differ between each cell type. Table S4 describes the EOL cycle number as well as

the total number of cycles at selected RPTs. Three different feature sets for the ca-

pacity and the estimated SRE parameters using the cycle-by-cycle data were built

on the basis of the total amount of information per RPT (i.e., RPT 1, 3, and 4). The

single RPT does not contain any seasonal RPT effects and as such, the features

were generated from a simple autoregressive integrated moving average (ARIMA)

(1,1,0) model. However, the features generated after 3 and 4 RPTs used the seasonal

ARIMAmodel, as discussed in Experimental procedures, to account for the RPT vari-

ation on the cycle-by-cycle series. The total number of RPTs used is restricted to only

4 RPTs, as that is the point in which P533 reaches the designated end-of-life.

Starting with the 3 RPT feature set, the random forest model was built on approxi-

mately 125 cycles. This is considered the minimum number of RPTs required for

measuring the seasonal ARIMA coefficients as there are only a total of three periods.

Figure 8 displays the parity plots for each predicted response in all cell types that

correspond to R2 values of 0.91, 0.95, and 0.94, respectively. Through visual
10 Cell Reports Physical Science 3, 101023, September 21, 2022
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Figure 8. ML outcomes

Parity plots are shown from the ML method for each predicted response using cycle-by-cycle information that spans three RPTs. The table represents

the median absolute prediction errors for each RPT response on the basis of the amount of information per number of RPTs used to generate the cycle-

by-cycle features. Note that values for ‘‘3 RPT’’ correspond with the parity plots.
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inspection, it can be noted that there may exist several outliers within the observed

values as each response increases in value. These points do depreciate the overall

model performance but are still included until further cell investigation can confirm

if the points are truly outliers. The maximum absolute error including the validation

set for each response was 8.8%, 8.8%, and 6.1% respectively.

The performance of the random forest model was tested over the multiple gener-

ated feature sets that includes increasing amount of cycle-by-cycle information.

The feature set with only 1 RPT can be considered the control case as there is no sea-

sonality within the cycle-by-cycle data. The table in Figure 8 displays the median ab-

solute prediction errors for each response and feature set combination. In general,

as the total number of included cycles on the basis of the RPT increases, the amount

of prediction error decreases. This can be attributed to the seasonal ARIMAmodel to

account for the variation in the cycle-by-cycle data caused by each RPT. However,

the LAM prediction does not have a strictly decreasing error rate. This could be

contributed to the LAM degradation mechanism being more influential later in cycle

count, but not necessarily exhibited in capacity curve alone. Different charging

features that are more correlated to the LAM can be included to further increase

the accuracy in prediction.
DISCUSSION

The three computational methods described herein demonstrate that accurate pre-

diction of future capacity loss and LLI can be achieved through using SREs as predic-

tive engines within different protocols. In particular, accelerated determination of

the SRE (a, b, M) parameters was achieved through the DL and CF methods. Accu-

racy is best attained for aging pathways along constant test conditions (e.g.,
Cell Reports Physical Science 3, 101023, September 21, 2022 11
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charging protocol, voltage range, temperature, and discharge conditions remain

constant within a test group) and that exhibit dependence on one dominant aging

mechanism such as LLI. Overall results indicate that for cases dominated by LLI we

can predict the EOT capacity loss by using only the first 2–3 weeks of data (out of

8–12 weeks of testing), in many cases to within 5%–10% relative error and to within

1%–2% absolute error. In particular, capacity loss averages for the three packs are

summarized per method as follows: P462 (DL, 2.91%; CF, 2.81%; ML, 1.72%),

P492 (DL, 0.49%; CF, 0.60%; ML, 0.74%), and P533 (DL, 0.13%; CF, 0.62%; ML,

4.63%).

There appear to be simple reasons why the methods show high accuracy under

some conditions but lower accuracy for others. For example, all methods saw

low absolute prediction error for P492, a pack that has cells with thinner electrodes

and better overall transport rate capabilities. In comparison, P462 has thicker elec-

trodes that have contributed to more cell-to-cell variability, apparently because of

issues involving heterogeneity in achieving consistent and thorough electrolyte

wetting of the porous regions. Hence, P492 is not as affected by LMD as P462,

for example, because of speculated more consistent electrode wetting and

decreased over-potential that would otherwise push thermodynamics at the anode

toward local LMD. With this in mind, we note that in Figures 5, 6, S1, and S2, there

is greater average predictive error in our CF and DL methods for P462 versus P492

and P533. Another observation is that there is a higher incidence of error in P462

for CF and DL methods for MS5 charge cases (see cells 11, 12, 13, and 15 in

Figures 5A, 6A, S1A, and S2A). The reason for this is not immediately clear, aside

from the fact that these four cells were charged at rates up to 7.5 and 9 C, which

would have encouraged more LMD (e.g., cells 11 and 13 had appreciable LMD on

the basis of post-test inspection). Last, the ML method provides good predictive

accuracy overall with the exception of a few outliers, such as P462 cell 5 and

P492 cell 41, but did poorly with P533 cells that underwent intermittent charge

profiles (cells 23, 24, 25, 26, and 27). This discrepancy is likely tied to the choice

of training versus test sets assigned to the ML, as no training sets were imple-

mented that had intermittent-type charge conditions. In conclusion, the attributes

and availability of test data will determine which computational method (or com-

bination thereof) will be better suited for accelerated life prediction. As summa-

rized in Figure 3, DL and predictive CF can manage sparse datasets with SRE

parameter analyses done on a cell-by-cell basis. The ML approach relies on

more data-rich scenarios but can predict off-matrix conditions with careful selec-

tion of training versus test sets.

In addition to expedited predictive capabilities, the SRE evaluations allow diag-

nostic insights for how the material-driven aging responses varied with cell design

and the chosen test conditions. The parameters (a, b, M) (and [c, d, N] where appli-

cable) are a diagnostic thumbprint based on chemical kinetics and thermody-

namics, making them suitable to support materials diagnostics and design optimi-

zation. For example, it is overall desirable to consider design concepts that will

lead to relatively low (a, M) terms, denoting a slow degradation process and a

low maximum extent of degradation. Thus, (a, b, M) can be tracked over a design

matrix to identify optimal design-to-aging outcomes (this could be done, for

example, between P462 and P492 SRE outcomes to look at electrode thickness

design attributes).

A key advantage of the methods described here is a broad flexibility to use on a cell-

to-cell basis across chemistries and designs including both research and commercial
12 Cell Reports Physical Science 3, 101023, September 21, 2022
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cells. As clearly shown above predictions were performed using the SRE method

for each individual cell and each specific use case. The ability to apply individual

mechanism-wise SRE is a distinct advantage when cells are expected to perform

under harsh use conditions. The ability to compensate for minor cell-to-cell

variation is well suited for design of battery packs and in understanding how other

manufacturing and design processes such cell wetting, electrode alignment, and fix-

turing could ultimately affect performance. The ability to perform broad predictions

also provides the opportunity to reduce error when drivers of variability are limited

such as in closely matched commercial cells or for mild use cases. Last, we foresee no

limitations in applying of our methods to other cell chemistries, because of the

generalized batch reactor mathematical basis of the SRE treatments.

In practice, our methods possess high potential to reduce battery test times and

related expense, promote rapid validation and market entry, provide diagnostic in-

sights into new cell chemistry performance, and enable timely feedback to battery

developers and end users. It should be noted that complicated duty cycles, mixed

charging profiles, and varying environmental factors over the timeline may still pro-

duce LLI-dominated aging that can be treated through the general SRE ap-

proaches given herein. For more complicated aging behavior such as LLI +

LMD + LAM, and others, the batch reactor analogy still holds, and other com-

plementary SRE-related mathematical treatments can be practiced if multiple

mechanisms are suspected and if test conditions vary along the timeline to pro-

duce path-dependent aging. In addition, our techniques are adaptable to cell

conductance loss, a parallel term to capacity loss for assessing battery state of

health. We recognize the critical importance of such impedance-related terms,

as seen in a previous publication that has EIS data along with SEI and charge trans-

fer resistances for P462 and P492 cells.1 These other factors will be the subject of a

follow-on paper.

To conclude, using 2–3 weeks of data with application of SRE-type mathematics for

accelerated battery life predictions has been demonstrated within simple con-

straints, as demonstrated with research-grade Gr/NMC532 pouch cells. This

involved methods with and without machine learning elements, depending on

whether rich or sparse datasets were used, respectively. The basis of SRE establishes

the connection to physics, as the model parameters pertain to chemical kinetics and

thermodynamics of an agingmechanism. In most cases, predictions were within 5%–

10% relative error and within 1%–2% absolute error for capacity loss and LLI for most

of the 40 cells included in our study. These results varied somewhat depending on

the chosen method and early-life data trends. Our predictive methods produce

best results when early-life aging is dominated by a single mechanistic path such

as LLI. Also, our three methodologies apply regardless of the design metrics and

charging profile (cell aging done under a single or constant charge condition versus

mixed use charging profile), and cell design. The work also shows applicability to ex-

tending tools developed using standard cycling to non-uniform, intermittent cases,

although care should be taken to have appropriate training sets for ML to enhance

prediction capability for anticipated mixed-use cases. In parallel to predictive capa-

bilities, the SRE basis allows the (a, b, M) parameters to be used for diagnostic ana-

lyses, with possible connection to improve cell materials design.

Benefits foreseen from this work are numerous because of reduced test times, good

accuracy of predictions, adaptability to different data types (e.g., RPT versus CBC),

diagnostic insights for cell chemistry response to stress factors, and overall reduced

cost for deploying new battery chemistries into the market. The CF and DL methods
Cell Reports Physical Science 3, 101023, September 21, 2022 13
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are patent pending and are available through license from Idaho National Labora-

tory (INL).

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be ful-

filled by the lead contact, Kevin Gering (Kevin.Gering@inl.gov).

Materials availability

This study did not generate new materials.

Data and code availability

d Laboratory data for cell capacity loss reported in this paper will be shared by the

lead contact upon reasonable request.

d This paper does not report original code.

d Laboratory procedures and conditions for battery testing are given in the Supple-

mental Experimental Basis: Battery Testing (Note S3), with key citations given

therein.1–5 Summaries of cell design metrics, cycling protocols and detailed

charging profiles are given in Tables S1, S2, and S3, respectively.

Methods to accelerate capture of SRE parameters (a, b, M) with fewer cycles

The overarching objective is to minimize the time (or cycles) required to obtain reli-

able SRE parameters that support prediction of battery aging over extended time at

least 3–4 times longer than the initial test data. Methods are discussed that make use

of early-stage RPT data versus use of cycle-by-cycle data performed at higher cycling

rates. There are advantages and disadvantages to either approach, as will be dis-

cussed below.

Analytical-based extrapolation methods using specialized functions

The general predictive curve-fitting method (see Figure 9) involves five components:

1. early-time RPT data (e.g., capacity loss) of at least three points;

2. applying specialized interpolative/extrapolative mathematical functions that

synthesize numerous capacity loss data in between and past RPT data points

of item 1;

3. using the outcome of item 2 (at different progression of time or cycle count) to

perform SRE regression to obtain SRE parameters (a, b, M) at different points

of progression of time or cycle count;

4. plotting the individual plots of a, b, and M gained from item 3 over different

points of progression of time or cycle count to ascertain convergence behavior

of these terms (we seek to determine convergent values for a, b, and M using

minimal RPT data); and

5. using the outcome of item 4 to predict battery aging over extended time or

cycle count by implementing the determined set of (a, b, M) within an SRE

expression.

We demonstrate this approach by using a single SRE that would denote a single

dominating aging mechanism, yet we acknowledge that a generalized application

would allow for multiple mechanisms with a corresponding number of SRE expres-

sions. The choice of the special functions in item 2 is for demonstration purposes

and is arbitrary, as some forms may provide better extrapolative behavior for partic-

ular datasets. These special functions can be customized toward particular SRE
14 Cell Reports Physical Science 3, 101023, September 21, 2022
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Figure 9. Overview of CF method

Shown are procedures and results for accelerated battery life prediction, as demonstrated for P462 cell 6. Note that the parameters (a, b, M) may each

require distinct mathematical formulae to enable accurate forecasting on the basis of a small number of initial data points.
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parameters. Last, we recognize that datasets outside of RPT conditions could serve

for item 1 provided the data are obtained under conditions that do not incur signif-

icant polarization effects.

On the basis of this general approach, the following describes a case with particular

elements of application. This method incorporates an SREmodel with curve fitting to

predict capacity loss and LLI at EOT. Three SRE parameters (a, b, M) representing

entire aging trends (i.e., from beginning to EOT) are predicted via curve fitting at

the early stage of cycling and used to predict capacity and LLI at EOT.

First, SRE parameters (a, b, M)n are calculated on the basis of RPT0 � RPTi (i = n + 1)

using the curve fitting method. Note that (a, b, M)1 are SRE parameters that best
Cell Reports Physical Science 3, 101023, September 21, 2022 15



Figure 10. Overview of DL method

This method uses a SRE basis for accelerated battery life prediction, employing a DL training

process connected to Monte Carlo inputs than span numerous sets of (a, b, M) values.
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represents aging trends between RPT0 and RPT2, and (a, b, M)2 is based on the

trends between RPT0 and RPT3. The parameters are limited according to the general

ranges of parameters (a, b, M) of the SRE model. In this study, the non-linear least

squaresmethod (Levenberg-Marquardt algorithm) from extensive library SciPy avail-

able in Python is used.19 It requires at least three data points to derive fitting param-

eters, and fitting performance is improved by including more data points via step 2

above. Thus, capacity and LLI at every cycle number are estimated with the spline

interpolation operation19 using the capacity and LLI at each RPT.

Second, a set of a, b, and M at EOT is predicted on the basis of the trends in each

parameter. In most cells, logarithmic and exponential trends are observed in three

or four sets of SRE parameters, which require five and six RPT data, including

RPT0, as shown in Figure 9. Trendline equations for each SRE parameter are derived

using a Microsoft Excel spreadsheet. After obtaining SRE parameters (a, b, M) at

EOT, capacity and LLI are predicted using SRE equation.
Method that couples deep learning with Monte Carlo methods

An accelerated battery life prediction framework is developed by combining the phys-

ics-based simulation using SRE forms and deep learning technology.20 This framework

provides an approach which integrates the experimental data, simulations, physics-

based model, and deep learning together to predict battery life with early cycle data.

In this framework, the training of DL prediction model relies on synthetic data, which

is generated by following an experimental data informed generation process as

shown in Figures 10 and S3. More specifically, the synthetic data are generated on

the basis of SRE models and include both synthesized capacity fade or LLI data cy-

cle-by-cycle until the end of life (e.g., 600 cycles). Separated sets of synthetic data

have been created for different packs (e.g., P462, P492, and P533). They are used

to create DLmodels for predicting capacity fade and LLI, respectively. The DLmodel

requires the inputs of general ranges of parameters in SRE model from prior physical

knowledge, and also the information for experimental data at early RPT cycles. Ac-

cording to general ranges of parameters (a, b, M) of SRE model, a grid search

method is applied to generate various combinations of (a, b, M), which are fed

into SRE model for calculate data at specific cycles. The known experimental data

at early cycles is used to ensure the synthetic data aligns with the degradation
16 Cell Reports Physical Science 3, 101023, September 21, 2022
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behavior at early cycles which has already happened, the simulated data which is not

within given thresholds at early cycles is discarded. This type of synthetic data gen-

eration process helps create a physically meaningful simulation dataset by injecting

a small amount of experimental data, which makes the DL model’s training process

more efficient. The use of synthetic data on the DL training process alleviates the de-

mand on experiment data a lot, which makes the application of DL methods in accel-

erated battery life prediction feasible.

The DLmodel in this proposed framework is a regressionmodel that predicts the pa-

rameters (a, b, M) of a SRE model. A one-dimensional (1-D) convolutional neural

network (CNN) is constructed to conduct this task, which includes three convolu-

tional layers, two max-pooling layers and three fully connected layers as illustrated

in Figure S4. The input data of this DL model has the dimension of 12631 (this is

the dimension whenmaking predictions with the use of RPT data by cycle 125), which

is preprocessed (i.e., normalization and interpolation) from given RPT cycles. There

are three outputs from this model, which associate with the three parameters in the

SRE model. This DL model is trained only using the synthetic data with detailed

training and validation process as illustrated in Figure S5. The mean-square error,

which is the average of the square of the difference between the original (a, b, M)

values and the predicted values, is used to evaluate the accuracy of parameters pre-

diction model. The synthetic data are divided into training and validation datasets

(e.g., 80% of synthetic data for training and 20% of them for validation), which aim

to reduce the overfitting during the training process. Early stopping technique,

which involves updating model checkpoints only when validation accuracy is

improved, is also applied to avoid overfitting. Models that have the best validation

accuracy on synthetic data are selected, and their model parameters are saved for

restoring during the testing and prediction process when using experimental data.

The DL model is implemented using Python on the basis of the PyTorch library.21

Themodels thatmake predictions in the Results section are trained using Adam opti-

mizer,22 learning rate of 0.001, total epochs of 500, and batch size of 128, and so on.

A Monte Carlo-based DL prediction process is developed to predict the capacity

fade or LLI at later cycles as illustrated in Figure S6. The inputs of this prediction pro-

cess are the experimental data of capacity fade or LLI at early RPT cycles and a

trained DLmodel to estimate the parameters in SREmodel. By combining theMonte

Carlo simulation technique, each given experimental data point serves as the mean

value of a uniform distribution or a normal distribution. The variance of constructed

input distributions is selected to represent the uncertainties or perturbation on given

experimental inputs. By sampling the constructed distributions, several groups of

perturbated experimental RPT data are generated. Before feeding them into the

trained DL model, the interpolation operation is applied to these groups of RPT

data to make sure the inputs have the information at each cycle (e.g., the data array

with RPT cycle 0, 25, 75, 125 [a vector with dimension 4 3 1] will be interpolated to a

data array with information at each cycle, i.e., a vector with dimension [1263 1]). The

trained DLmodel from synthetic data will take the experimental input data to predict

values of parameters (a, b, M). Each generated input from Monte Carlo simulation

will create a prediction on these three parameters. Using these predicted parame-

ters, the corresponding SRE models are established so that the capacity fade

information in the future cycles can be inferred from the SRE-based prediction

models. For a given future cycle (e.g., cycle 450), multiple predictions on capacity

fade or LLI could be derived. From these predictions, a mean value and SD can be

calculated, which stand for the mean prediction on capacity fade or LLI and its pre-

diction uncertainties. This shows the proposed approach will not only provide the
Cell Reports Physical Science 3, 101023, September 21, 2022 17
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mean values on the target prediction, but also can model the uncertainties on pre-

dictions. The uncertainties would be necessary and valuable to describe the confi-

dence on predictions for future battery life. Therefore, because of the combination

of simulations, physics-based model and DL technologies, this approach reduces

the need for experimental data to predict battery life. This accelerates battery life

prediction by using very early cycle testing data.

In conclusion, the methods above demonstrate that high-fidelity prediction of EOT

capacity loss can be obtained through accelerated determination of the SRE (a, b, M)

parameters. This outcome is best captured for aging pathways along constant test

conditions that are dependent on one dominant mechanism such as LLI. Other math-

ematical considerations can be invoked if more than one mechanism is suspected

and if test conditions vary along the timeline to produce path-dependent aging.

These other cases will be the subject of a future paper.

Machine learning approach

Multi-dimensional testing information can be arranged into a ML problem that allows

linkage between test conditions and data types (e.g., daily cycle-by-cycle to monthly

RPT data transitions). This enables cycle-wise interpolations between RPT points,

thereby producing amuch-enriched data field formachine learning objectives. Linkage

to SRE formulae then connects this ML framework to physics-defined aging processes.

Data-driven application of machine learning to the prediction of the capacity, LLI,

and LAM is highly dependent on the quantity and quality of information obtained

within the cells testing period. Additionally, there are complications on how to struc-

ture the generated data into a machine learning problem. This stems from the fact

that the response that is to be predicted (e.g., LLI, LAM, or aging) is per cell, while

the testing information consists of a time series based on the cycle over multiple vari-

ables (e.g., temperature, charging conditions, capacity, and voltage responses).

Rather than having a matrix of information, commonly used in most ML algorithms,

the testing information consists of a 3-dimensional set or tensor: information per cell,

information per variable within the cell, and the information per variable with respect

to cycle.12,15 Additionally, the RPT used to measure the state of the battery induces

cycle-by-cycle variation within a variable where each RPT may be taken at a different

cycle number. As such, this section devoted to connecting the cycle-by-cycle infor-

mation to the RPT LLI and LAM through data-driven machine learning.

One of the first issues to be considered is converting the structure of the cycle-by-

cycle information for each cell into a matrix. In a way, this is a form of dimension

reduction to convert the tensor of information into a matrix. The method of choice

for this paper is to use the autoregressive moving average coefficients to describe

the temporal aspect of a single variable (e.g., the capacity or columbic efficiency

per cycle).12,15 The choice of lags within the ARIMA may be tuned to the problem

through an information criterion. However, as noted previously, the RPT has a

non-periodic effect on the cycle-by-cycle information. For example, a cell may

have an RPT measured at 25, 50, and 75 cycles while another may be measured at

25, 75, and 150 cycles creating disparate cycle behaviors. Early cycle-by-cycle infor-

mation prior to the first RPT may be used without detriment, but attributes such as

the LAM may only be apparent after multiple RPTs. To address this issue, a single

cell’s cycle-by-cycle data in-between each RPT is interpolated to be of the same

size as the smallest RPT period. This creates a periodic RPT effect where the seasonal

ARIMA model may be applied to determine the additive or multiplicative effects of

each RPT.23 With the ARIMA coefficients obtained and the seasonal RPT effect
18 Cell Reports Physical Science 3, 101023, September 21, 2022
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removed, the data can be interpolated back to the original cycle length. Combining

the ARIMA coefficients results in a final matrix where each row consists of a single cell

and each column is an ARIMA coefficient per variable.

In addition to the ARIMA coefficients, a set of SRE a, b, and M values were estimated

using the CBC information within the respective RPT range. This was done to help

inform the model of the non-linearities introduced by the logistic nature of the a, b,

and cycle number. The values of a, b, and M were optimized through minimizing the

root-mean-square error between the cycle-by-cycle capacity and the SRE functional

response of the capacity. The cycle-by-cycle capacity does not follow the exact RPT ca-

pacity, but it is expected that this information can be used to infer the RPT result.

On the basis of the aspects of the data, the random forest algorithm was chosen to

be used in prediction of the capacity, LLI, and LAM.24 This is mainly because the data

are small and exhibit potentially imbalanced cell types. However, the collection of

trees that drives the prediction is restrictive in interpretation and will be reported

as a prediction value rather than explaining which effects constitute an increase in

either LLI or LAM in the degradation mechanism. Both the number of variables

sampled at each decision tree split (mtry) and the number of trees used were both

optimized using the out-of-bagging error (OOBE).
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Note S1: Supplemental Mathematical Background and Application to Battery Aging 

Three methods that have a basis in SRE are investigated for comparative accelerated life predictions 

wherein only small amounts of early-life data such as capacity loss are required. A discussion on SRE 

basis and utility is given for the sake of technical context for battery systems.  

1.1. SRE Basis and Background 

For battery systems, SREs are a chemical engineering means to describe reaction progression and 

consequences in a batch reactor, for single (Eq. 1) and multiple (Eq. 2) aging mechanisms6: 
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where 𝜓 (𝑖, i*, 𝑡) represents a life metric such as capacity loss that varies from an initial state, usually a 

new cell at beginning of life (BOL), although provision is made to start the analysis from an interim aging 

state through inclusion of the 𝑀𝑖
′  term. Each SRE contains three physical parameters (a,b,M) that 

collectively describe the progression of a given mechanism along a time regime or other counting-type 

regime such as cumulative battery cycles (see Fig. 2).  The ‘a’ term represents the rate constant for the 

mechanism, the ‘b’ term represents the order of said reaction or mechanism, and the ‘M’ term is the 

maximum possible extent (0 to 1 or 0 to 100%) of the mechanism under the conditions of the aging test.  

When aging data (such as percent capacity loss over time) is regressed using SREs, there are some 

general guidelines that should be followed to keep (a,b,M) within realistic physical boundaries.  First, 

(a,b,M) should all be positive.  Values of ‘a’ should track with the relative strength of the prevailing stress 

factors that drive forward a mechanism, e.g., becoming larger at higher temperatures. The ‘b’ term will 

reflect the origin or mode of mechanism, such as LLI vs LAM, by virtue of its magnitude (see Fig. 2).  

Also, similar to the ‘a’ term, the ‘M’ term should track with the relative strength of the prevailing stress 

factors.  That is, for battery aging in general we anticipate that M will become larger under battery 

operating conditions of higher temperatures and larger SOC.  We note that in all cases the sum of M 

contributions from all mechanisms must be within 0 to 100 percent, that is ΣMi ≤ 100%.  Because (a,b,M) 

are unique to a given chemistry under particular stress factors, they provide a physics basis for 

cataloguing aging response and can then be used to elucidate (1) cell chemistry improvements, and (2) 

changes to cell use conditions that would moderate the rate and extent of aging.  SRE-type expressions 

are becoming increasingly recognized as concise yet powerful predictive tools for describing battery aging 

behavior.13  This is an encouraging trend, as it speaks to the move to adopt physics-based methods and 

to lessen the dependence on empirical mathematics. 

In the expressions above ‘i’ represents the ith aging mechanism, i* represents arbitrary aging conditions 

and ‘t’ is time.  Equivalently, cycle count can be substituted for time provided there is a translation for 

cycles-per-day in the ‘a’ term.  The summation form of Eq. (2) infers that aging mechanisms are additive.  

This appears to be a reasonable assumption for LLI and LAM, as they tend to progress along different 

mechanistic pathways with LLI being surface-driven and LAM being more reliant on 3-dimensional 

attributes.  We recognize, however, that there can be inter-dependence among aging mechanisms, such 

as where LLI might need to reach a particular threshold before a geometric-type LAM component is 

initiated.  In such cases, data analyses through SRE (a,b,M)i can reveal if there is a transition region 

between the occurrence of LLI and a mature LAM mechanism.   



Regarding the progression of LLI and LAM, it is generally understood that surface-driven reactions such 

as electrode passivation occur at a quicker rate than those aging mechanisms that progress along 3-

dimensional domains within electrode materials.  Thus, we anticipate that battery aging will typically have 

LLI as a predominant early mechanism, followed by LAM.6  The extent to which these mechanisms 

manifest over time is controlled by the combinatorial effects of battery materials design and chemical 

formulations thereof as well as the prevailing environmental and use conditions.  Given such relative 

emergence between LLI and LAM, an SRE expression for each provides adequate descriptions of the 

combined aging over time.  This summed SRE outcome generally assumes that the LLI and LAM 

contributing mechanisms are independent, although the approach can be adapted to accommodate inter-

dependency between LLI and LAM, such as when LLI is sufficiently advanced to reach a threshold that 

initiates LAM.  Lastly, there are cases where a third capacity change mechanism is at play,  but rather 

than a loss mechanism there is capacity gain from early-life thermodynamic stabilization of the cathode, 

wherein the cathode slowly excludes “excess” lithium as it arrives at a more thermodynamic-stable 

crystalline state.6,14-16  This is often seen for cathodes that are engineered with excess stoichiometric 

lithium.  For this work we restrict SRE application to LLI and LAM components.  A special caveat for LLI is 

that it may contain contributions from LMD during cell charging.  Since LMD is a surface driven 

consequence, its impact on capacity loss may be indistinguishable from routine LLI (that is the result of 

surface passivation from oxidation-reduction reactions involving solvents on electrode surfaces) without 

additional data or analysis.   

 

Note S2: Supplemental Data Management and Requirements 

Uniqueness of solution is always an underlying question for regression schemes. Under normal aging 

progression, LLI (a 2-dimensional consequence on electrode surfaces) would dominate at early time, 

while LAM ( a 3-dimensional consequence within electrode substrates) would take longer to manifest. 

This is general knowledge for lithium-ion systems discussed by Gering.6 Per the SRE parameters 

described in Figure 2 we can confirm the order of mechanisms from regression outcomes of the (a,b,M) 

parameters. Regarding overfitting, it would be difficult to determine a specific minimum amount of data for 

a deep learning model at the beginning of analysis. Usually, while training a deep learning model we try 

utilizing as much data as we can to achieve a best performance. After doing this, various techniques, e.g. 

early stopping, regularization, etc. can be used to avoid overfitting.   

On the practical side of data utilization, we are aware that too much data can result in less accurate 

estimation and sometimes outlier data needs to be excluded for better estimation. However, usually 

excessive data that “breaks” the modeling framework is because too many features are used as model 

inputs, not just because the amount of data is used for model training. If some irrelevant features are 

used for model training and construction, this will compromise the model’s performance. In CF and DL 

prediction, we have utilized early cycling RPT data (with as little as only 3-5 data points), thus we did not 

have the problem of too much data causing overfitting. So, the usable data for our model’s inputs is 

limited. As shown in Fig. 5, we derived (a,b,M)1-4 using 3 – 6 data points and predict (a,b,M)12 based on 

trend captured from (a,b,M)1-4. Therefore, a little deviation or scatter in the trend (e.g., capacity loss at 100 

cycles in cell 9, shown in Fig. 4f) in capacity data or derived (a,b,M) affects prediction accuracy 

significantly in CF prediction. This results in relatively higher prediction error in P462 Cells 4, 11, and 15. 

On the other hand, the DL prediction model is trained using the generated simulated data based on SRE, 

which helps to minimize effect of data scatter. That is one of main reason why DL prediction outperform 

CF prediction without excluding data.  

As a parallel point, the incorporation of SRE physics-based models provides benefits in terms of guiding 

ML over cycle counts, thus reducing the number of cells needed to train the ML architecture.  In this way 

our methods are distinct from traditional ML approaches that are data-intensive and we reduce the testing 

burden.   



A complication is arrived at in some early-life battery aging data in terms of mixed-mode LLI comprised of 

SEI and LMD contributions.  A general starting point to deconvolute LMD from “normal” SEI-driven LLI is 

to consider a baseline testing condition at a charging rate slow enough to avoid creating LMD-forming 

conditions. That would be used to compare against data obtained at higher charge rates, keeping the 

number of cycles as the basis.  Subtraction of {higher rate} – {slower rate} capacity loss data can give an 

early estimate for the contribution due to LMD.  Choice of these cycling conditions is important and might 

take some early trial and error for a particular chemistry.  For example, when considering cells with thicker 

electrodes our LMD-free charging rate was assigned at around 4C, while 6C conditions clearly produced 

LMD in many cells.  There are other methods that make use of electronic signatures to detect the 

occurrence of LMD, such as was published by our group.5  

Thus, aging estimation accuracy is affected by mechanistic complexity of aging processes within the 

system, and this gives shape to the edge of understanding for battery chemistries.  The presented 

methods in this study show better estimation accuracy in cells with less or no lithium plating, possibly due 

in part to CF and DL having utilized single SRE for all cells. For example, we observed significant lithium 

plating on the anode after 450 cycles from cells 4-15 in P462, and less or no evidence of lithium plating 

from cells 16-21 in a previous publication,10 which corresponds to estimation accuracy as shown in Fig. 

8a.  The progression from LLI to LAM is also an area of heightened complexity, as there may well be 

interdependence of LAM on LLI. We see the value of exploring the enticing complexity of these topics in a 

follow-on paper. 

 

Note S3: Supplemental Experimental Basis: Battery Testing 

3.1  Background 

The purpose of the underlying research was to determine performance and aging of lithium-ion cell 

chemistries designed for fast-charge applications. As described elsewhere, cells were tested under 

multiple conditions, many defined by CC-CV charging, wherein there is an initial constant-current (CC) 

portion followed by a constant-voltage (CV) condition at an upper voltage.4,9,10  In addition to single-

condition CC-CV charge rates, some cells underwent other “mixed use” charge profiles that had either 

multiple charge steps or other combinations either within the same charging event or periodically over a 

specified number of cycles.  Mixed use charge cases allow us to orient charging profiles more closely to 

match capabilities of a cell chemistry (to increase charge performance and decrease aging), and to 

approach more realistically what charge conditions will eventually be seen in vehicle charging facilities. 

3.2  Description of cell chemistry and differences therein (P462, P492, P533)  

The single layer pouch cells used in this study were built by Cell Analysis, Modeling, and Prototyping 

(CAMP) Facility at Argonne National Laboratory and had Graphite (1506T) and NMC532 (Toda America) 

as anode and cathode materials, respectively. The Toda NMC532 has a polycrystalline architecture with 

no coatings. The cells were built with two different combinations of loading or thickness: low loading (Llow) 

and moderate loading (Lmoderate). Detailed information of the cell materials and architectures can be found 

in Table S1.  The tested cells’ names are identified by a test plan number (starting with a “P” following by 

three digits) and a cell number. Cells with the same P number are fabricated using the same design, cell 

chemistry, and tested in the same batch.  

The choice of cell materials was driven by the U.S. DOE XCEL program, covering development of battery 

fast-charge chemistries. The overarching goal of this program is to develop lithium-ion cell chemistries 

that facilitate a 10-minute fast charge at room temperature while using high-energy electrode loadings. 

While the NMC532 cathode architecture proved to be a reasonable and informative early choice for the 

XCEL program, the evolving focus has since moved more toward cobalt-reduced cathode materials such 

as NMC811.  In more recent work we confirmed application of our predictive methods to cells with 

NMC811 and other anode materials. 



3.3  Test Conditions and Charge Protocols 

Table S2 lists the various conditions for cell formation, life-cycle aging and charging protocols. It is seen 

that the three test packs underwent unique combinations of charge conditions.  Table S3 contains more 

detailed descriptions for the various charging methods. Cells were tested with a MACCOR series 4000 

Automated Test System at 30 ±1°C. During each life cycle, the cells were charged and discharged as 

designated, with 15-minutge rests between cycling legs. 

Cells were cycled with different charging profiles up to 600 times, while discharging at a C/2 rate in 

between. For the Llow cells time limited constant current-constant voltage (CC-CV) charge profiles 

between 1C to 9C were evaluated (See Table S2). For the Lmoderate cells, besides CC-CV, several different 

versions of fast charge profiles, i.e., 2-step, MS5, voltage ramp, and intermittent profiles were investigated 

(refer to Table S2). A subset of Lmoderate cells were cycled with different fast charge scheduling described 

in Table S2. The intermittent profiles are a mixture of several simpler profiles. In intermittent profile A1 in 

every 5 cycles were charged at the 7.5 C voltage ramp charge profile17 (see Table S3), and the rest of 4 

cycles were charged using 1C CC-CV. In intermittent profile B, the first 5 cycles in each of the cycle life 

set (continues cycles before RPT) were charged using the voltage ramp 7.5 C profile, while the rest of 

cycles follow 1C CC-CV profile.  

3.4 RPT versus cycle-by-cycle (CBC) bases 

Good supporting data is the currency for good analyses.  In some cases, selected data conditioning is 

done to prepare data for one or more mathematical analyses.  For example, smoothing is done for data 

that would otherwise reflect undue CBC variance.  Also, polarization effects are subtracted from higher 

rate cycling data to better isolate true irreversible capacity loss.  Ultimately, such data conditioning 

provides a more consistent platform for data entering SRE and ML architectures, enabling more stable 

and reliable predictions. In addition to the daily CBC testing, periodic RPT were conducted every 25–50 

cycles initially, and every 100–125 cycles in the later stages over the course of a total of 450–600 cycles. 

RPTs consisted of a C/20 charge-discharge cycle with an 1 h rest time between each the charge and 

discharge components of the cycle.  For cells charged with aggressive conditions, the cell recovers during 

the slow RPT cycles from the polarization caused by the fast-charging lifecycles and gains a more 

efficient Li utilization pattern. This recovery process is visible in the cycle-by-cycle trend of capacity, as 

intermittent spikes up to 5–7 cycles immediately after each of the RPT intervals. This phenomenon is also 

reported and rationalized in previous works.4,8,9 An outcome of operating at both RPT and CBC conditions 

is that the resultant capacity data has unequal bases owing from the CBC data being impacted by 

polarization and the dynamic recovery introduced by such. 

3.5  Data suitable for use in accelerated life predictions with PGML 

We endeavor to identify irreversible aging outcomes through our testing and modeling techniques.  Data 

that is obtained at relatively higher cycling rates (here, C/2 versus C/20) will be encumbered with 

reversible polarization effects that confuse the isolation of true aging progression.  Cycles allowed to 

continue under such conditions may well develop a polarization hysteresis that is cumulative over cycles.  

For these reasons we generally use slow-rate RPT capacity data (e.g., C/20 basis) as the “truth” for 

irreversible aging.  However, numerical treatment of faster-rate data (via smoothing, compensation for 

polarization, etc.) was used herein to provide information that is usable within ML as training data. The 

benefit of using CBC data obtained at more common, faster rates is one of convenience and economy, in 

terms of not disrupting cycle-life testing (as much) for the sake of time-consuming monthly diagnostics. 

However, in order to use CBC data within a meaningful quantitative framework, polarization attributes 

must be managed to prevent introducing reversible polarization effects into data that is meant to capture 

true irreversible aging. 

  



 

 

Fig. S1.  Summary of relative prediction error in capacity loss for cells of the three test packs within this 

study. Please also see legend for Figure 5 for further details. 
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Fig. S2.  Summary of relative prediction error in LLI for cells of the three test packs within this study. 

Please also see legend for Figure 6 for further details. 
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Fig. S3. Diagram of experimental data informed synthetic data generation process. 

 

 

 

 

 

 

Fig. S4. DL architecture with 1-D convolutional neural network for SRE parameters predictions. 
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Fig. S5. Diagram to illustrate the workflow of the DL training process using SRE synthetic data.  

 

 

 

 

Fig. S6.  Monte Carlo based DL prediction framework for capacity fade or LLI prediction using early cycle 

experimental data. 
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Table S1. Summary of cell design metrics for the three battery packs investigated. 

 Moderate loading cells 

(Lmoderate) 

Low loading cells  

(Llow) 

Pack number P462, P533 P492 

Cathode design 

Type Toda NMC 532 

Area, cm2 
Single layer pouch cell: 14.1 

Coin cell for LAM testing: 1.27 

Coating Thickness, µm 71 62 

Foil Thickness, µm 20 20 

Coating Loading, mg/cm2 18.57 11.4 

Porosity, % 35.6 33.1 

Anode design 

Type Superior Graphite SLC 1506T 

Area, cm2 Single layer pouch cell: 14.9 

Coating Thickness, µm 70 57 

Foil Thickness, µm 10 10 

Coating Loading, mg/cm2 9.38 6.38 

Porosity, % 38.2 37.4 

Separator design 

Type Celgard 2320 

Area, cm2 Single layer pouch cell: 15.5  

Thickness, µm 20 

Porosity, % 39 

 

  



Table S2.  Summary of cell designs and cycling protocols. 

 

 Moderate loading cells 
 (Lmoderate)  

Low loading cells  
(Llow) 

Pack numbers  P462, P533 P492 

Formation profiles 1. Tap charge to 1.5 V and hold for 15 min 
2. Rest at OCV for 12 h 
3. Charge 3 cycles at C/10 between 4.1V and 3.0 V and discharge 3 cycles 

at C/2 between 4.1 V and 3.0 V 
4. Hold at 20% state of Charge for 6 h 

Aging profiles 1. Charge at designated charging rate profiles until 4.1 V. Hold at 4.1V until 
the total charging time reaches 10 min 

2. Rest at OCV for 15 min 
3. Discharge at C/2 
4. Rest at OCV for 15 min 

C-rates (highest 
throughout the 
charging protocol)  

1C, 4C, 6C, 7.5C, 9C  1C, 4C, 6C, 9C  

Designated 
charging profiles 
and the C-rates in 
the profiles  
 
*Details of the 
profiles in Table S3 

P462 Cells:  
 
CC-CV 
4C: Cell 16, 17, 18 
6C: Cell 04, 05, 06 
 
2-Step 
4C: Cell 19, 20, 21 
6C: Cell 07, 08, 09 
 
MS5 
7.5C: Cell 13, 15 
9C: Cell 11, 12 
 

P492 Cells:  
 
CC-CV 
1C: Cell 24 - 29 
4C: Cell 30, 31 
6C: Cell 32, 33, 35 
9C: Cell 39, 41, 43 

P533 Cells: 
 
CC-CV 
1C: Cell 01, 02, 03 
 
Intermittent profile A 
Cell 23, 24, 25 
 
Intermittent profile B 
Cell 26, 27, 28 

RPT intervals  
(cycle numbers 
where RPTs 
occurring) 

P462 Cells: 0, 25, 50, 75, 100, 125, 
175, 225, 275, 325, 375, and 450 
 
P533 Cells: 0, 25. 75, 125, 225, 
425, and 600 

P492 Cells: 0, 25, 75, 125, 225, 325, 375, 
450,  and 600 
 

Total number of life 
cycles  

P462: 450  
P533: 600 

P492: 600 

 

  



 
Table S3. Detailed descriptions of cycling profiles.   
 

Designated charging profiles Detailed descriptions 

CC-CV Charge at CC to 4.1V, then go to CV and continue 
charging until 60 min (if using 1C), 15 min (4C), 
10 min (≥ 6C). 

2-Step A two-step charging protocol that charges at a CC 
until 4.1V is reached and then step down to a 
lower CC step until the total charge time reaches 
10 min.4,18 

MS5  A five-step charging protocol that maximizes the 
magnitude of CC charging portion by providing a 
stepwise charging profile. The c-rate ramps down 
in 5 steps until total charging time reaches 10 
min.4  

Intermittent profile A A mixture of charging protocols throughout battery 
life cycles. 1 in every 5 cycles using the 7.5C 
Voltage Ramp profile (below), rest of the cycles 
using 1C CC-CV. 

Intermittent profile B A mixture of charging protocols throughout battery 
life cycles. Cycles 1-5 and 26-30 in each cycle life 
set using  7.5C Voltage Ramp profile (below), 
remainder using 1C CC-CV.   

7.5C Voltage Ramp17 • Step 1: CC charge step, charge at 7.5C (240 
mA) until 4.0V 

• Step 2: Increase voltage at 2 mV/10s until 
4.1V  

• Step 3: Go to CV step@4.1V if 4.1V is 
reached Step 2 and continue charging until 
total 10 min charge time has reached. 

 
  



 
Table S4. The total number of cycles per scheduled RPT. 

Cell Type RPT 1 Cycle # RPT 3 Cycle # RPT 4 Cycle # EOL Cycle # 

P462 25 100 125 450 

P492 25 125 225 450 

P533 25 125 225 425 
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