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Abstract— This paper provides an overview, methodology, and 

accuracy assessment detailing the collaborative efforts between 

Ridgetop Group Inc. (Ridgetop) and Idaho National Laboratory 

(INL) in advancing the system architecture of the CellSage battery 

health modeling, simulation, and analysis software platform to 

allow end users to adapt the CellSage battery modeling tool to 

make predictions for batteries for which an end user has necessary 

baseline cycle life and calendar life aging data. These efforts 

resulted in the design and development of automated regression 

analysis methods for baseline battery aging data, aiming to extract 

essential model parameters for Sigmoidal Rate Expressions 

(SREs). Such SRE parameters are utilized in CellSage to predict 

battery aging under reasonable use, such as arbitrary conditions 

of temperature, state of charge, and other operating conditions 

related to a specific battery duty cycle.  The underlying technology 

core is based on a patented approach where the sum of SREs has 

been demonstrated to accurately model the loss of lithium 

inventory (LLI) and loss of active material (LAM) as the dominant 

aging mechanisms within lithium-ion batteries. Throughout this 

paper there is a discussion on various types of battery State-of-

Health (SoH) Prediction models, an overview of how capacity loss 

is calculated with SREs, and a comparative analysis that evaluates 

the accuracy of the new automated regression analysis methods 

for eight baseline aging datasets from various battery chemistries 

and cell types. 

Keywords— Batteries, Modeling, Simulation, Prognostics, 

Predictive Analytics  

I. INTRODUCTION  

Battery health modeling, simulation, and analysis play a 
crucial role in predicting the performance and longevity of 
lithium-ion batteries in diverse applications ranging from 
consumer electronics to electric vehicles. This paper presents a 
collaborative initiative between Ridgetop Group and Idaho 
National Laboratory aimed at enhancing the CellSage battery 
health modeling software. CellSage is a collection of patented 
modeling tools that enable diagnostics and predictive 
evaluations of battery life and mission readiness. Through the 
U.S. Department of Energy (DOE) Office of Technology 
Transitions, Ridgetop Group has partnered with INL to license, 
enhance, and commercialize this technology for battery 
manufacturers, researchers, and integrators on a global scale. 
Ridgetop and INL have been working together since 2015, but 
the primary focus of the collaboration highlighted in this paper 
was to overcome limitations associated with the original method 

of extracting model parameters from historic baseline aging data 
and develop automated regression analysis methods that could 
be deployed in a standardized graphical user interface (GUI). 
These advancements were integral to addressing several 
challenges posed by the previous method, including the reliance 
on third-party software and the lack of a standardized curve 
fitting approach across all baseline aging datasets. 

The modifications to the CellSage system architecture aim 
to enhance user adaptability, allowing end users to leverage 
predictive capabilities for batteries with relevant baseline aging 
data. The development of automated regression analysis 
methods simplifies the extraction of essential model parameters, 
specifically for the Sigmoidal Rate Expressions (SREs). This 
updated approach permits the storage and GUI editing of each 
SRE parameter in a dynamic cell chemistry library, promoting 
flexibility for parameter updates. By eliminating the reliance on 
third-party software and incorporating user-friendly features, the 
enhancements result in significant cost and time savings, 
streamlining the previously laborious process of manual 
regression analysis and hard-coding or resulting simulation 
parameters. 

The absence of a standardized curve fitting approach in the 
previous method has also been rectified, ensuring that results are 
not hard-coded to remain within boundary conditions. The 
updated methodology also minimizes the prerequisite for an in-
depth understanding of battery aging, electrochemistry, and the 
intricate details of the underlying SRE modeling approach. This 
feature also enhances the usability of CellSage, making it more 
widely applicable across different user backgrounds and 
expertise levels. 

The subsequent sections of this paper shall cover the 
methodology employed in developing two distinct automated 
regression analysis methods, the calculation of capacity loss 
using SREs, and a comprehensive comparative analysis that 
assesses the accuracy of these new methods across eight baseline 
aging datasets representing various battery chemistries and cell 
types. Through these discussions, we aim to demonstrate the 
robustness and versatility of the enhanced CellSage platform in 
predicting battery aging under diverse operating conditions. 

II. DIFFERENT TYPES OF BATTERY SOH PREDICTION MODELS 

Battery State-of-Health (SOH) estimation is a critical aspect 
in the performance and management of modern lithium-ion 
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batteries. Accurate assessment of SOH is essential for 
optimizing battery life, ensuring safety, and enhancing overall 
efficiency. Throughout the last several decades, various 
methodologies have been developed to estimate battery SOH, 
each leveraging different principles and techniques. This paper 
provides an overview of five distinct types of battery SOH 
estimation methods as highlighted in several recent publications: 
Empirical and Equivalent Circuit Models, Purely Data-Driven 
Models, Physics-Based Models, Purely Artificial Intelligence 
(A) and Machine Learning (ML) Models, and Hybrid Models. 
[4][5][6][7] 

A. Empirical and Equivalent Circuit Models: 

Empirical models are based on experimental data and 
statistical analyses. These models often use regression 
techniques to correlate observable parameters, such as voltage 
and current, with the battery's degradation over time. Equivalent 
circuit models, on the other hand, represent the internal behavior 
of a battery using electrical components like resistors and 
capacitors. Combining empirical data and equivalent circuit 
models allows for a good starting point to understand battery 
behavior and degradation mechanisms. However, this modeling 
approach is subject to known limitations such as limited 
accuracy, parameter sensitivity, and minimal prediction 
capabilities in the absence of electrochemistry, physics, and 
thermodynamics. 

B. Purely Data-Driven Models: 

Purely data-driven models rely on machine learning 
algorithms to analyze large datasets and identify patterns related 
to battery degradation. These models do not necessarily 
incorporate physical principles governing the battery's operation 
but are effective in capturing complex relationships within the 
data. Common techniques include neural networks, support 
vector machines, and regression models trained on historical 
data to predict future SOH. 

C. Phyiscs-Based Models: 

Physics-based models leverage knowledge of the underlying 
physical and chemical processes within a battery. These models 
consider factors such as electrode kinetics, thermal effects, and 
electrochemical reactions to simulate the battery's behavior. 
Physics-based models provide a deep understanding of the 
fundamental mechanisms governing battery degradation, 
making them valuable for accurate SOH estimation in various 
operating conditions. The core architecture within CellSage 
consists of physics-based models. After calibration with 
baseline aging data, CellSage is able to forecast deviations from 
baseline aging under various user-defined operating conditions. 
This capability provides a solid foundation for evaluating the 
aging effects under virtually limitless combinations of battery 
use conditions. 

D. Purely AI and ML Models: 

Purely AI and machine learning (ML) driven models are 
designed to capture intricate patterns and relationships within 
battery datasets without explicitly relying on physical principles. 
These models, including deep learning architectures like neural 
networks, use complex algorithms to uncover hidden features in 

the data and predict the SOH. Purely AI and ML models are 
particularly effective when dealing with non-linear and dynamic 
relationships in large datasets. 

E. Hybrid Models:  

Hybrid models combine the strengths of both physics-based 
and data-driven approaches. By integrating physical principles 
with machine learning algorithms, hybrid models aim to 
improve accuracy and robustness in SOH estimation. These 
models capitalize on the interpretability of physics-based 
models and the pattern recognition capabilities of machine 
learning, resulting in a comprehensive framework suitable for 
various battery types and usage scenarios. This approach has 
also been applied at INL where the research team evaluated a 
three hybrid modeling methods that combined the physics-based 
SRE foundation in CellSage with predictive curve-fitting (CF), 
ML, and Deep Learning (DL) methods coupled with Monte 
Carlo simulation. As reported in a recent Cell Press article, this 
method demonstrated that just 2-3 weeks of testing data on 
battery capacity loss could accurately predict capacity loss 8-12 
weeks ahead. For many test cases the relative error rate was 5%-
10% and the absolute error rate was 1%-2%. [2] 

Understanding and accurately estimating the SOH of 
batteries are crucial for the widespread adoption and deployment 
of lithium-ion batteries for targeted applications such as electric 
vehicles, grid energy storage, and consumer electronics. The 
choice of the most suitable method depends on factors such as 
available data, computational resources, and the desired balance 
between accuracy and interpretability. Researchers and 
practitioners can benefit from this comprehensive overview to 
make informed decisions when selecting and implementing 
battery SOH estimation methods and capacity fade models for 
various applications. 

III. PREDICTING BATTERY CAPACITY LOSS USING SIGMOIDAL 

RATE EXPRESSIONS FOR LLI AND LAM  

CellSage utilizes Sigmoidal Rate Expressions (SREs) to 
calculate battery degradation and provide predictions for both 
cycle life and calendar aging. As proven by INL in multiple 
research publications [1][2][3], the fundamental idea is that the 
reduction in overall battery capacity is influenced by prevailing 
aging mechanisms, notably Loss of Lithium Inventory (LLI) and 
Loss of Active Material (LAM), which can be accurately 
modeled with SREs. In some cases, there is an additional 
mechanism that emerges due to excess lithium that is released 
from the cathode as it slowly undergoes thermodynamic re-
stabilization of its crystalline form, wherein a capacity gain is 
observed and can also be modeled using an SRE. 

In the context of battery systems, SREs function as a 
chemical engineering tool, effectively describing the evolution 
of detrimental chemical reactions and other degradation 
processes (e.g., mechanical degradation of electrode materials) 
and their consequences within a batch reactor containing 
multiple aging mechanisms. This concept can be expressed 
mathematically as shown in Equation 1 on the following page.  
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Each SRE encompasses three distinct physical parameters 
denoted as 'a,' 'b,' and 'M,' collectively portraying the evolution 
of a specific aging mechanism either over time or through 
cumulative battery cycles. These three parameters capture 
chemical kinetic and thermodynamic information about each 
aging mechanism. The maximum extent of capacity loss due to 

the 𝑖𝑡ℎ mechanism is given as 𝑀𝑖. The rate constant for the  𝑖𝑡ℎ 

reaction is given as 𝑎𝑖. Finally, the order of reaction of the 𝑖𝑡ℎ 
reaction or process is given as 𝑏𝑖. Time is represented by 𝑡. Note 
that the total sum if 𝑀𝑖 terms should reside within 0 to 100% 
relative to pristine capacity at beginning of life (BOL). 

When applying SREs to regress aging data, such as the  
percentage of capacity loss as a function of time, it is necessary 
to adhere to certain guidelines in order to obtain physically 
meaningful values of the SRE parameters 𝑀𝑖 , 𝑎𝑖 , and 𝑏𝑖 . All 
values of 𝑀𝑖 , 𝑎𝑖 , and 𝑏𝑖  are greater than zero. The maximum 

extent and rate of the 𝑖𝑡ℎ  reaction, given as 𝑀𝑖 , and 𝑎𝑖 , 
respectively, ought to increase with increased stress factors: 
higher temperature, greater relative charge (higher SOC), 
greater depth of discharge, and higher charge and discharge 

current. The order of reaction of the 𝑖𝑡ℎ reaction, 𝑏𝑖, indicates 
whether the reaction is a surface (LLI) or volume (LAM) 
process. Finally, the battery cannot lose more than 100% of 
pristine capacity, thus the sum of the extent of reactions must be 

less than 100%; ∑ 𝑀𝑖 ≤ 100%
𝑁𝑅
𝑖=0 , where 𝑁𝑅  represents the 

number of reactions considered by the sum of sigmoids. These 
restrictions are summarized in Figure 1.  

 

Figure 1: Description of SRE parameters for modeling 
capacity loss in CellSage 

As determined through regression or other means, the SRE 
parameters 𝑀𝑖 , 𝑎𝑖 , and 𝑏𝑖  are functions of specific battery 
chemistry And use conditions as detailed above, making the 
SRE parameters a unique thumbprint of aging for a chosen cell 
chemistry under specific use. As such, they provide a 
foundational physics-based framework for categorizing aging 
responses. Consequently, they can be employed to reveal 
insights into (1) improvements in cell chemistry and (2) 
alterations to cell usage conditions that could mitigate the rate 

and extent of aging. In practice, CellSage adapts the SRE 
parameters toward specific use conditions that may well vary 
over the timeline, providing an ideal platform for investigating 
aging path dependence. 

As shown in the recent Cell Press article [2], the utilization 
of SRE-type expressions is gaining recognition as an effective 
predictive tool for describing battery aging behavior. This 
positive trend indicates a shift toward embracing physics-based 
methods and reducing reliance on empirical mathematics. 

SRE modeling is pivotal for comprehending the aging 
process of lithium-ion batteries. As battery energy storage (BES) 
gains traction in sectors like electric vehicles and stationary 
energy systems, it becomes imperative to implement advanced 
battery management systems (BMS) that can compare real time 
degradation data against proven physics-based models like 
CellSage. When fully integrated, such BMS designs enable real-
time monitoring of battery health, prediction of aging trends, and 
early detection of potential failures during operation. This 
proactive approach enhances battery longevity and contributes 
to safety and sustainability, aligning with the ongoing shift 
towards electric solutions aimed at achieving zero emissions.  

Understanding the root causes of degradation is vital for 
guiding improvements in battery chemistry and corrective 
strategies. Battery aging is influenced by factors like path 
dependence, cell chemistry, and the differentiation between 
reversible and irreversible performance losses. To address these 
complexities, Ridgetop and INL researchers have collaborated 
extensively to test and validate the SRE modeling approach 
within CellSage to allow for the identification and classification 
of aging modes using electrochemical data.  

IV. AUTOMATIC REGRESSION ANALYSIS TO EXTRACT SRE 

MODEL PARAMETERS 

It is possible for a CellSage user to adapt the battery-
modeling tool to model battery capacity loss for a battery of 
interest. To do this, it is necessary to determine calibration 
parameters from four specific datasets: two datasets with 
measured aging that occurred during cycle testing at different 
temperatures and all other variables the same between the two 
measurements, and two datasets with measured aging that 
occurred during calendar testing at different temperatures and all 
other variables the same between the two measurements. These 
datasets are imported into the chemistry-import feature via the 
GUI shown as Figure 2.  

The top-right corner of Figure 2 shows the sum of sigmoids 
used to model battery capacity loss in CellSage, and is shown as 
Equation 1. The central-right region of Figure 2 shows cycle-life 
capacity loss data (dotted line), the corresponding fit achieved 
with the non-linear least squares method of fitting (solid purple 
line), and the mechanisms of loss associated with LLI, and LAM 
as green and blue dashed lines, respectively. Fitting parameters 
determined by the non-linear least squares curve-fitting 
algorithm are shown below the plot of the associated curve fit 
and mechanistic components.  



 

 

 

Figure 2: CellSage New Chemistry Import Feature. 

Temperature parameters associated with the four datasets are 
automatically calculated after each dataset has been fit with the 
user-selected two or three-term SRE model. Given the two 
datasets per capacity-loss mode (either cycle-life capacity loss, 
or calendar-life capacity loss), activation energy is calculated 
according to Equation 2. 

𝐸𝑎 =
𝑅𝑇1𝑇2

𝑇2−𝑇1
∙ (ln(𝜒(𝑇2)) − ln(𝜒(𝑇1))) (2) 

Activation energy of parameter 𝜒, where 𝜒 is the parameter 
whose activation energy is being calculated, is given by 𝐸𝑎, the 
ideal-gas constant by 𝑅 , and absolute temperatures of 
experiment 1 and experiment 2 by 𝑇1  and 𝑇2 , respectively. 
Activation energy is calculated according to Equation 2 for each 
parameter determined with the non-linear least squares curve-
fitting process.  

Equation 2 was determined assuming 𝜒(𝑇1) and 𝜒(𝑇2) were 
determined as parameters from the fitting process. If the 
parameter 𝜒 follows the Arrhenius rate law, then 𝜒(𝑇1) = 𝜒0 ∙
exp(−𝐸𝑎 𝑅𝑇1⁄ ), and 𝜒(𝑇2) = 𝜒0 ∙ exp(−𝐸𝑎 𝑅𝑇2⁄ ), where 𝜒0 is 
the value of 𝜒 at infinite temperature. Taking the natural log of 

each equation gives ln(𝜒(𝑇1)) = ln(𝜒0) − 𝐸𝑎 𝑅𝑇1⁄  and 

ln(𝜒(𝑇2)) = ln(𝜒0) − 𝐸𝑎 𝑅𝑇2⁄ . If the activation energy and 

parameter value, 𝜒 at infinite temperature are the same for each 
temperature, then subtraction of the natural log of the two 

parameters given ln(𝜒(𝑇2)) − ln(𝜒(𝑇1)) = 𝐸𝑎(1 𝑅𝑇1⁄ −
1 𝑅𝑇2⁄ ) = 𝐸𝑎((𝑇2 − 𝑇1) (𝑅𝑇1𝑇2)⁄ ) . Solving the previous for 
𝐸𝑎 gives Equation 2. 

Fitting results and regression efficiency are dependent on 
initial estimates of the SRE parameters. Users can either 
estimate these initial parameter values by visually analyzing the 
dataset or utilize an initial estimate provided through the 
genetic-algorithm fitting method detailed below. Additionally, 
any number of parameter values, from zero to one less than the 
total number of parameters of the model used to fit data can be 
fixed by the user. This flexibility proved essential because the 
parameter space defined by the capacity-loss model spans either 
six or nine dimensions, whereas many capacity-loss datasets 
often lack the total number of test cycles necessary to observe 
the maximum extent of LLI and LAM. Consequently, the ability 
to fix a parameter can significantly reduce the total parameter 

space from six or nine dimensions down to as little as one 
dimension. 

Consider the genetic algorithm employed for generating 
initial estimates of SRE parameters within the CellSage 
capacity-loss simulation model. As covered in the previous 
section, CellSage utilizes a combination of two or three sigmoid 
functions to depict battery capacity loss under realistic, arbitrary 
usage scenarios. The calibration process of CellSage 
necessitates the computation of either six or nine SRE 
parameters. Identifying the optimal set of SRE parameters can 
pose challenges, as local extrema within the parameter space 
may cause algorithms such as the Levenberg-Marquardt method 
to become trapped in these local extrema. Unlike methods 
reliant on derivatives, such as the Levenberg-Marquardt method, 
a fitting approach like the genetic algorithm is less prone to 
converging towards a solution associated with a local extremum. 

Conceptually, the genetic algorithm works according to 
Figure 3.  

 

Figure 3: Genetic algorithm 

The genetic algorithm as implemented for CellSage begins 
by generating a random set of three values for each of the six or 
nine SRE parameters, depending on whether the two or three-
term model is selected for fitting the data in question. The 
chosen  model is evaluated using exhaustive combinations of the 
randomly-generated possible solutions.  

The solution with the best fit  is determined according to the 
sum of squares error and whether or not the following 
restrictions are met by the proposed solution: the sum of the 
maximum extent of each reaction is less than 100%; the rate of 
reaction of LLI must exceed the rate of reaction LAM; the order 
of reaction of LLI must be less than the order of reaction of 
LAM; the ratio of the extent of LLI to LAM must be greater than 
0.325 and less than 3.0; the magnitude of the LLI rate constant 
must be sufficiently close to 0.1; the value of the LAM rate 
constant must be sufficiently close to 0.005; the LLI order of 
reaction must be sufficiently close to 0.65; the LAM order of 
reaction must be sufficiently close to 2.0. Note that the SRE rate 
constants used in CellSage have default units of inverse weeks 
if a time basis is used during regression. If a per-cycle basis is 
used then the rate constant values should reflect the cycles-per-
week basis. If all these conditions are met, and the sum of 
squares error associated with a possible set of parameters is less 
than the previous least sum of squares value, then that solution 
is chosen as the new best fit. Mathematically, these restrictions 
are shown as Equation 3 through Equation 10.  



 

 

𝑀 + 𝑁 ≤ 100    (3) 

𝑎 > 𝑐    (4) 

𝑏 < 𝑑    (5) 

0.325 <
𝑀

𝑁
< 3.0   (6) 

|𝑎 − 0.1| < 0.095   (7) 

|𝑐 − 0.005| < 0.03   (8) 

|𝑏 − 0.65| < 0.35   (9) 

|𝑑 − 2.0| < 1.7   (10) 

If a proposed solution meets these requirements, and the sum 
of squares error is less than the previous sum of squares error 
associated with the previous best solution, the new solution is 
taken as the best, and is used to generate a family of new 
solutions. This process is repeated until a solution meets a 
predisposed criterion. In this case, the sum of squares error of an 
acceptable solution had to be less than a specified value. 

Figure 4 displays the fitting outcomes attained using the 
genetic algorithm for the identical dataset depicted in Figure 2. 
This specific curve fitting  result was accomplished in under five 
seconds using a modern Windows PC with 16GB of ram and a 
12th gen Intel i-7 processor, yet the overall curve-fitting duration 
with the genetic algorithm is contingent upon both the noise 
level and length of the baseline aging dataset.  

We recognize the importance of also looking at the 
uncertainty error for each SRE parameter. It is possible to 
achieve high R2 and low sum-of-squares predictive error while 
still having high uncertainty errors for particular parameters. A 
rough rule-of-thumb is to achieve uncertainty errors that are less 
than 10% of each regressed parameter value.  By doing so, 
spurious SRE outcomes are avoided and a higher confidence of 
the fit is attained. 

 

Figure 4: Dataset fit with genetic algorithm 

Table 1 shows SRE parameter estimates provided from the 
following three sources:  

1. Manual Non-linear least squares from third-party 
software  

2. Automated Non-linear least squares from CellSage 
New Chemistry Import Feature: 

3. Genetic Algorithm  

Table 1. Initial SRE parameter estimates to compare. 

 M a  b  N c   d  

1 7.970 0.217 0.600 40.100 0.011 2.000 

2 7.970 0.230 0.729 61.869 0.010 2.271 

3 8.202 0.198 0.722 20.000 0.017 2.750 

 

Inspection of Table 1 shows that the value of 𝑁 determined 
with the genetic algorithm differs from the value of 𝑁 
determined using the non-linear least squares method by about 
20 and 40 percent, and that use of the parameter values as inputs 
for the non-linear least squares fitting method are more 
consistent.  

This result begs the question: what fitting method produces 
the most reasonable solution? This question would be best 
answered by long-term test data associated with the battery in 
question. However, such measurements are difficult to find. In 
the absence of such data, comparison of fitting results for a 
longer test time or larger number of cycles can offer some 
insight into which set of parameters might represent the better 
fit.  

A comparison of result from evaluation of Equation 1 using 
each of the parameter sets from Table 1 is shown as Figure 5 and 
Figure 6. In each instance, the parameter sets resulted in curve 
fits with Mean Squared Error (MSE) below 0.02, indicating 
satisfactory performance in terms of curve fitting. However, 
there is observed variation in long-term behavior between the 
fits generated by the non-linear least squares method and the 
genetic algorithm. The left-hand plot of Figure 6 illustrates that 
while non-linear least squares fits suggest capacity loss 
progressing to approximately 65% to 70%, the genetic algorithm 
indicates asymptotic capacity loss nearing 30%. Despite this 
difference in long-term behavior, agreement in results persists 
until around week 75, representing roughly a 30-week extension 
beyond the data collection endpoint, as depicted in the right-
hand side of Figure 4. 

 

 Figure 5: SRE results comparison up to 100 weeks. 



 

 

 

Figure 6: SRE results comparison up to 250 weeks. 

 Although these findings highlight certain limitations 
regarding the genetic algorithm's ability to produce SRE 
estimates with precise long-term outcomes, it excels in 
providing initial SRE estimates for the automated non-linear 
least squares method utilized in CellSage. Together, these 
capabilities have empowered Ridgetop, INL, and their 
collaborators to develop reasonable CellSage models with 
limited baseline aging data. 

V. MODEL COMPARISON AND METHOD VALIDATION  

To begin the model comparison and method validations we 
will review a of summary table for the calculated Sum of 
Squared Errors (SSE), Root Mean Square Error (RMSE), Mean 
Square Error (MSE), and R-Squared Coefficient (R² ) for each 
of the default cell chemistry models within CellSage. Each 
metric is calculated as follows: 

• 𝑆𝑆𝐸 = ∑ (𝑦𝑖
𝐷𝑎𝑡𝑎 − 𝑦𝑖

𝑀𝑜𝑑𝑒𝑙)
2𝑁

𝑖=1  

• 𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑁
 

• 𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 

• 𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
, 𝑆𝑆𝑇 =  ∑ (𝑦𝑖

𝐷𝑎𝑡𝑎 − 𝑦𝑎𝑣𝑒
𝐷𝑎𝑡𝑎)2𝑁

𝑖=1  

The following notes can be used to assess the quality of the 
fit based on each of the calculated metrics:  

• SSE – The smaller the SSE, the better the fit.  

• RMSE – The smaller the RMSE, the better the fit. 

• MSE – The smaller the SSE, the better the fit. 

• R² - The closer to 1.0, the better the fit.  

In addition, checking parameter-wise uncertainty errors is 
highly recommended for each dataset under regression. Often, 
improvements in lowering such errors can be seen by providing 
better upfront estimates for the SRE parameters. 

For the second set of model comparison exercises, Ridgetop 
and INL have prepared Figure 7 - Figure 14 

  to qualitatively assess the accuracy of using the SRE results 
from cycle life one, to model cycle life two temperature 

conditions. Note that the only difference between cycle life one 
and cycle life two is that cycle life two is associated with greater 
temperature than cycle life one. All other operating conditions 
are the same including the cell chemistry, form factor, and 
cycling rate. 

Table 2. Summary Table of MSE, SSE, R2, RMSE for 
Automated Non-linear least squares regression analysis of Cycle 
Life One data at lower baseline temperature. 

 

 

Figure 7: CellSage SRE Comparison for the LFP-Graphite 
(A123 26650) Battery Model. 

Figure 8: CellSage SRE Comparison for LFP-graphite 
(A123 Nanophosphate 20Ah) Battery Model. 



 

 

 

Figure 9: CellSage SRE Comparison for the Lithium Cobalt 
Oxide (18650) Battery Model. 

 

Figure 10: CellSage SRE Comparison for an LMO-LTO Battery 
model. 

 

Figure 11: CellSage SRE Comparison for the NCA-graphite 
(DOE Gen2 18650- Model 1) Battery Model. 

 

Figure 12: CellSage SRE Comparison for NCA-graphite (DOE 
Gen2 18650- Model 2) Battery Model. 

 

Figure 13: CellSage SRE Comparison for the NMC-graphite 
(Panasonic UR 18650) Battery Model. 

 

Figure 14: CellSage SRE Comparison for the NMC-graphite 
(Sanyo Y 18650) Battery Model 



 

 

VI. SUMMARY AND CONCLUSION 

Based on Table 2 and Figures 7-14, the CellSage SRE results 
from cycle life one demonstrate both quantitative and qualitative 
agreement when simulating baseline aging data at cycle life two, 
despite the latter being associated with a higher testing 
temperature. This observation highlights the robustness of the 
models and methods employed. 

To validate the models, Table 2 was utilized to analyze 
metrics such as Sum of Squared Errors (SSE), Root Mean 
Square Error (RMSE), Mean Square Error (MSE), and R-
Squared Coefficient (R²) for each default cell chemistry model 
within CellSage. Lower SSE, RMSE, and MSE values indicate 
better fits, while R² values closer to 1.0 signify stronger fits. 

Several chemistry models in Table 2 exhibit remarkably low 
error metrics, such as the and other models like the LMO-LTO 
model like the NMC-graphite (Panasonic UR 181650) model 
demonstrate slightly higher error metrics. Nonetheless, it's 
crucial to emphasize that all cell chemistry models adhere to the 
boundary conditions set by the underlying physics-based logic 
governing CellSage. One important takeaway is that accuracy 
and model fidelity typically increases with increased test cycles 
as the SREs can be calibrated to the maximum extent of the 
dominant aging mechanisms such as LLI and LAM. 
Additionally, it's essential to recognize that model fidelity can 
vary depending on factors such as cell chemistry, baseline 
testing equipment, sampling rate, size of aging dataset, and 
several other environmental operating conditions during the data 
acquisition process.  

Qualitative assessment through Figures 7-14 confirms the 
accuracy of using SRE results from cycle life one to model cycle 
life two under different temperature conditions. Despite the 
increased temperature in cycle life two, the consistency in results 
underscores the reliability of the modeling approach, given that 
all other operating conditions remain constant, including cell 
chemistry, form factor, and cycling rate. These findings support 
the efficacy of the utilized methodology and contribute to the 
validation of CellSage models for predicting battery behavior 
under varying conditions. 

In summary, this collaborative effort between Ridgetop 
Group and Idaho National Laboratory aimed to enhance the 
CellSage battery health modeling, simulation, and analysis 
software platform, enabling predictions for batteries with 
necessary baseline aging data. Automated regression analysis 
methods were developed to extract essential model parameters 
for SREs, enhancing the platform's efficacy in predicting battery 
aging under diverse operating conditions. Overall, these findings 
validate the enhanced CellSage platform as a valuable tool for 
battery manufacturers, researchers, and integrators worldwide. 
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