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ABSTRACT 

Valuating the accuracy of information produced by a set of 
prediction algorithms is a prime question in prognostics. 
Equally important is a quantification of the efficiency of 
convergence from an initial estimate error to an estimate error 
that falls within an α-margin of accuracy. This paper presents 
an overview of qualifying significant prognostic information 
related to Remaining Useful Life (RUL), State of Health 
(SoH), Prognostic Distance (PD), and Prognostic Horizon 
(PH). Models and metrics related to that set of information 
are developed and presented. A NASA-identified accuracy 
problem with the  method for evaluating relative 
accuracy of RUL estimates is presented and explained, and 
an alternative method is presented as a solution. The 
alternative method comprises a figure of merit, Convergence 
Efficiency, to evaluate the convergence of estimates of PH to 
within an -margin of accuracy. Estimates of PH include 
estimates of RUL, PD, and end-of-life (EOL) and are 
produced each time a new input data point is processed. The 
paper ends with a conclusion section. 

1. INTRODUCTION 

A Prognostic Health Management (PHM) system comprises 
frameworks (CAVE3 2015, Goodman, Hofmeister, and 
Szidarovszky 2019, Kumar and Pecht 2010) that may be 
realized as shown in Figure 1. The first stage of prognostic 
monitoring is the sensing section, observing one or more 
nodes of a system and collecting Condition-based Data 
(CBD) containing noise and features useful for determining 
the health of a system. : Figure 2 is an example of CBD 
comprising noise and features: a feature not correlated to a 
failure mode of interest becomes noise. 

The second stage performs signal processing serving data 
processing and feature extraction that includes, for example, 
data and domain transforms. The output of that stage is 

feature data (FD) that is also known as condition indicators 
and/or precursors to failure. (Goodman, Hofmeister, and 
Szidarovszky (2019), Hofmeister, Goodman, and 
Szidarovszky (2017, 2018), IEEE Draft Standard (2018)). 

 

Figure 1. Diagram of a PHM system with a 3-stage 
monitoring system: (1) sensing, (2) data processing, and (3) 

prognosing. 

 

Figure 2. Example of CBD comprising noise and features at 
the output of a switch-mode power supply. 

One feature shown in Figure 2, the damped-ringing response, 
also contains additional features as shown in Figure 3. 
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Figure 3. Damped-ringing response with three features: 
amplitude, resonant frequency, and exponential decay. 

1.1. Features and Signatures 

Referring back to Figure 2 and Figure 3, in the presence of 
degradation, FD forms a signature that can be modeled by 
various approaches such as Physics of Failure (PoF) and 
Failure Mode Effects Analysis (FMEA) as a function of a 
change in value (dP) of a parameter (P). For example, the 
filtering capacitors in the output of a power supply are prone 
to failure. Modeling includes the following (Judkins and 
Hofmeister, 2007): 

 Multiple features (CBD) and noise (N) 

𝑉 ൌ  𝐶𝐵𝐷ଵ  𝐶𝐵𝐷ଶ  ⋯ 𝐶𝐵𝐷  𝑁ଵ  𝑁ଶ  𝑁     ሺ1ሻ 

 Damped-ringing response (a CBD feature) 

𝑉 ൌ 𝑉  𝐴ோሼ𝑒𝑥𝑝ሺെ𝑡 𝜆⁄ ሻሽሼ𝑐𝑜𝑠ሺ𝜔𝑡   𝜙ሻሽ  ሺ2ሻ 

 Natural resonant frequency 

𝜔 ൌ  ඥ𝐴ோ  1  ሺ1 √𝐿𝐶⁄ ሻ   ሺ3ሻ 

 Circuit quality 

𝑄 ൌ  ඥ𝐴ோ  1  ሺ1 𝑅⁄ ሻሺඥ𝐶 𝐿 ⁄ ሻ  ሺ4ሻ 

 Measurable frequency   

 𝜔 ൌ  𝜔ඥ1 െ 1 ሺ4 𝑄ଶ⁄ ሻ      ሺ5ሻ 

 Simplify frequency model using substitution, assuming 
a high value of Q (≥ 10), and using insignificant 
variations in the values of A, R, and L compared to 
changes in value of C due to degradation: 

𝜔 ൎ  𝜔ඥሺ 𝐶0 ሺ𝐶0 െ 𝑑𝐶ሻ⁄ ሻ    ሺ6ሻ 

C0 is a nominal value of C and dC represents a change 
in value of C. 

1.2. Signature Transforms 

A set of feature values {𝐹𝐷} forms a characteristic curve: a 
signature such as that shown in Figure 4. 

. 

 

Figure 4. Example of a signature: FD is the resonant 
frequency that changes as capacitance is reduced in the 

output filter of a switch-mode power supply. 

 Feature data 

𝐹𝐷 ൌ  𝜔 2𝜋⁄      ሺ7ሻ 

𝐹𝐷 ൌ  𝜔 2𝜋⁄    ሺ8ሻ 

1.2.1. Functional Failure Progression (FFP) Signature 

Functional failure is defined as a state-of-health and 
operation wherein a prognostic target is no longer operating 
within specifications. The data points comprising an FFP 
signature are calculated as follows: 

 Let NM represent a noise margin to mitigate noise, let 
𝐹𝐷  represent the FD value of an i-th sample, and let 
𝐹𝐷௦ represent a value to canonicalize data to a scale 
such that 1.0 represents approximately a doubling in 
value 

𝐹𝐹𝑃 ൌ ሺ𝐹𝐷 െ 𝐹𝐷 െ 𝑁𝑀ሻ 𝐹𝐷௦⁄       ሺ9ሻ 

 With dP being a change in value of a parameter P, 
representing C0. If 𝐹𝐷 represents the nominal value of 
the resonant frequency of a damped-ringing response, 
and FD, the resonant frequency of a damped-ringing 
response in the presence of degradation, then: 

𝐹𝐹𝑃 ൌ 𝑓ሺ𝐹𝐷 , 𝐹𝐷ሻ𝑔ሺ𝑑𝑃, 𝑃ሻ  ሺ10ሻ 

Figure 5 is an example of an FFP signature. 

1.2.2. Functional Failure Signature (FFS) 

Dividing FFP signature data, or a derivative signature of it, 
by a value that represents a failure threshold and multiplying 
it by 100, creates a Functional Failure Signature (FFS): 

 Let FL = an FFP value at which a prognostic target is no 
longer able to operate within specifications (functional 
failure) 

𝐹𝐹𝑆 ൌ 100 𝐹𝐹𝑃 𝐹𝐿⁄   ሺ11ሻ 
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An FFS has the following properties that are very amenable 
in prognostics: (1) when FFS  0, there is no degradation; 
(2) when FSS  100, functional failure has occurred; (3) 
otherwise, the prognostic target (a power supply for example) 
is operating in a degraded state: see Figure 6. 

 

Figure 5. Example FFP signature. 

 

Figure 6. Example FFS. 

1.2.3. Degradation Progression Signature (DPS) 

EQ. (10) can be solved to produce a Degradation Progression 
Signature (DPS) which is defined as 

𝐷𝑃𝑆 ൌ 𝑑𝑃 𝑃 ൌ ℎሺ𝐹𝐹𝑃ሻ⁄     ሺ12ሻ 

In the case of our example power supply, it can be shown that 

𝐹𝐹𝑃 ൌ ሺ𝐹𝐷 𝐹𝐷⁄ ሻሺሾ1 ሺ1 െ 𝑑𝑃 𝑃⁄⁄ ሻሿ െ 1ሻ  𝑐  ሺ13ሻ 

𝐷𝑃𝑆 ൌ 1 െ 1 ሺ𝐹𝐹𝑃  1ሻଵ ⁄⁄  𝑑  ሺ14ሻ 

 Where n = ½, c is a constant, d is a constant 

Since a DPS is essentially a derivative of an FFP signature, 
an FFP to DPS transform linearizes curvilinear signatures. 

See Figure 7 for an example DPS and compare that to Figure 
5. 

 

Figure 7. Example DPS from the FFP signature data 
shown in Figure 5 after data smoothing. 

1.2.4. Transform DPS Data to FFS Data 

DPS data is further transformed to FFS data by performing 
the following as each DPS data point is created: 

 Transform the FFP-based FL to a DPS-based FL 

𝐹𝐿ௌ ൌ  1 െ 1/ሺ 𝐹𝐿ிி  1ሻଵ ⁄   ሺ15ሻ 

 Transform each DPS data point to an FFS data point 

𝐹𝐹𝑆 ൌ 100 𝐷𝑃𝑆 𝐹𝐿ௌ⁄   ሺ16ሻ 

The FFS for the example we have been using is shown in 
Figure 8: compare that to Figure 6 and note the following: the 
FFS from a DPS is more linear than an FFS from the FFP 
signature, and data smoothing of an FFP signature results in 
a smoothed FFS.   

 

Figure 8. Example FFS from the DPS shown in Figure 7. 
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1.3. Prognostic Information 

1.3.1. Prognostic Information and Ideality  

Ideally, the prognostic information produced by a prediction 
engine will be ideal, regardless of linearity of the input data: 
see the example plots in Figure 9 and Figure 10. The PA 
(Prognostic Accuracy) represents a condition where every 
RUL estimate, which is used to estimate PH, is exactly 
correct. 

 

Figure 9. Example of ideal RUL and PH plots. 

 

Figure 10. Example SoH plot (red). 

Such ideality is impossible, if for no other reason that it is 
impossible to know exactly how long it will take for every 
instantiation of a prognostic target to fail prior to detection of 
degradation and subsequent functional failure. The prediction 
engine used to create prediction information uses a system 
specified Predicted Initial Time-to-Functional Failure 

(PITTFF) as an initial RUL value: that value will either be 
higher or lower than the actual time it takes to progress from 
the onset of degradation to functional failure. At best, the 
objective is to produce prognostic information that 
approximates pseudo-ideal such as that shown in Figure 11 
and Figure 12. 

 

Figure 11. Example pseudo-ideal RUL and PH plots, given 
a higher than actual value of PITTFF. 

 

Figure 12. Example pseudo-ideal RUL and PH plots given a 
lower than actual value of PITTF. 

1.3.2. Realistic Prognostic Information 

Real data is not ideal. In addition to noise, there are variances 
from ideal that are not related to degradation such as, for 
example, sampling periods, quantization errors because of 
analog-to-digital and digital-to-analog data conversions, 
computational rounding, and the effects of feedback: see 
Figure 13. At best, then, prognostic information is going to 
look like either the top (solid) or the bottom (dashed) plots 
seen in Figure 14.  
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Figure 13. Examples of non-ideality in a signature. 

 

Figure 14. Example plots: realistic RUL estimates are noisy 
and not straight lines (top and bottom plots) rather than the 

straight-lines (middle plot). 

1.4. Prognostic Information and Terminology 

Referring to Figure 15, there are two prime events: one is 
when degradation is detected (BD) and the other one when 
functional failure occurs (EOL). BD occurs after the true time 
of onset of degradation because sampling (TS) is periodic. 
EOL can occur either before or after true functional failure 
because data smoothing is typically employed and that tends 
to shift signatures downward. The prognostic information of 
interest are RUL, PH, and PD 

1.4.1. RUL 

RUL estimates are defined as the time between the time of 
sampling and the estimated EOL for that sample 

𝑅𝑈𝐿𝑖 ൌ 𝐸𝑂𝐿𝑖 െ 𝑇𝑆𝑖   ሺ17ሻ 

 

Figure 15. RUL and PH plots and related terms. 

1.4.2. PH and PD 

In this paper, definition of PH is defined as the time since 
degradation was detected plus the RUL estimate for the 
sampled data  

𝑃𝐻𝑖 ൌ ሺ𝑇𝑆𝑖 െ 𝐵𝐷ሻ   𝑅𝑈𝐿
𝑖
  ሺ18ሻ 

Ideally, all values of 𝑃𝐻𝑖 would be equal to 𝐸𝑂𝐿 െ 𝐵𝐷, 

PD is defined as the distance in time between the i-th estimate 
of EOL and the i-th time of a sample 

𝑃𝐷  ൌ 𝐸𝑂𝐿 െ 𝑇𝑆   ሺ19ሻ 

𝑃𝐷ெ  ൌ 𝐸𝑂𝐿 െ 𝐵𝐷   ሺ20ሻ 

2. RELATIVE ACCURACY AND CONVERGENCE EFFICIENCY 

Relative accuracy means how accurate is a measurement or 
calculation relative to something.  

2.1.  Method of Evaluating RA 

Saxena, Celaya, Saha, Saha, and Goebel (2009) defined 
relative accuracy as the accuracy of 𝑅𝑈𝐿 relative to the true 
value of RUL at that time and named the method , 

𝑅𝑈𝐿𝑇𝑅𝑈𝐸 ൌ 𝐸𝑂𝐿𝑇𝑅𝑈𝐸 െ 𝑇𝑆𝑖   ሺ21ሻ 

ൌ 100ሺ𝑅𝑈𝐿 െ 𝑅𝑈𝐿்ோாሻ/𝑅𝑈𝐿்ோா ሺ22ሻ

A problem with EQ. (22) is the denominator, 𝑅𝑈𝐿்ோா , 
decreases in value over time. For example, suppose the time 
of sampling is 10.2 sampling periods from the time of 
𝐸𝑂𝐿்ோா . Further suppose a prediction engine estimates 
RUL as being 10.3 sampling periods (99% accurate). Ten 
sampling periods later, 𝑅𝑈𝐿்ோா is reduced to 0.3 and 𝑅𝑈𝐿 



CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019 

PHM Society 2019 Conference    6 
Scottsdale, AZ  24-27 Sep. 2019 

is reduced to 0.2 and from EQ. (22),  is calculated as 50% 
a very large accuracy error (see Figure 16). 

 

Figure 16. Relative accuracy plot (after Saxena et al. 2009. 

The accuracy error is unavoidable as one should not calculate 
a value with a greater degree of precision than the precision 
of the measurement. In this case, the precision is one 
sampling period: hence one should not produce a value of 
10.2 for RUL but round it to 10. 

2.2. Accuracy, Precision, and Sampling 

Accuracy and precision requirements and sampling must be 
consistent.  

For example, suppose the PHM requirements are the 
following: (1) notification of failure must be at least 72 hours 
in advance with an accuracy of േ one hour, and (2) 12 hours 
before failure, predicted time of failure must be accurate to 
within 5%. Those requirements lead to a sampling rate of at 
least 4 times per hour: 

5% of 12 hours equals 0.6 hours 

20 periods of 0.6 hours in 12 hours 

40 samples in 12 hours (absent significant noise) 

Minimum sampling rate of 3.33 times per hour 

Increase to 4 times per hour  

2.3. -Margin of Accuracy 

An alternative to  is to use the following approach: 

 Use EQ. (18) to calculate values of 𝑃𝐻 

 Calculate an estimate for 𝑃𝐷ெ 

𝑃𝐷ெሺሻ ൌ 𝑚𝑎𝑥 ሺ𝐸𝑂𝐿ିହ
 െ 𝐵𝐷ሻ ሺ23ሻ 

 Calculate a Margin of Accuracy 

ൌ 100ሺ𝑃𝐻 𝑃𝐷ெሺሻ⁄ െ  1ሻ ሺ24ሻ 

 When is within a specified value, then  

𝑃𝐷ఈ ൌ  𝑃𝐷 at the time when 𝑃𝐻 is at first within criterium. 

2.4. Convergence Efficiency Method of Evaluating RA 

The proposed approach defines and uses a Convergence 

Figure of Merit () that is defined as follows: 

 Let α be a specified margin of accuracy such as 25%, 
10%, or 5%, 

 Let 𝑇𝑆be the time of sampling when PH୧ is within the 
specified α-margin of accuracy for all subsequent 
samples. 

 Let 𝑃𝐻ఈ  be a value of 𝑃𝐻  equal to 𝑃𝐷ெሺ1 േ
𝛼 100⁄ ሻ, 

 Let 𝑃𝐷ఈ be the distance when 𝑃𝐻 criterium is met for 
all subsequent times of samples (𝑇𝑆ሻ 

Then the Convergence Figure of Merit is the value of 𝜒 
when all subsequent values of 𝑃𝐻 are within the margin 
of accuracy defined by 𝑃𝐻ఈ, 

𝑃𝐷𝛼 ൌ 𝐸𝑂𝐿𝛼 െ 𝑇𝑆𝛼    ሺ25ሻ 

𝜒𝛼 ൌ ሺ𝑃𝐷𝛼 𝑃𝐷𝑀𝐴𝑋ሻ⁄     ሺ26ሻ 

2.4.1. Use as a Metric for Evaluation and Verifications 

Convergence is a useful performance metric to determine 
whether a prognostic system and its set of operating specifics 
meets requirements regarding performance. A typical set of 
performance requirements might be stated in the following 
manner: 

 The prognostic system must detect degradation at least 
2,500 hours before failure. 

𝑃𝐷ெ ൌ  2,500 hours 

 The prognostic system must predict failure at least three 
quarters of the prognostic distance before failure with at 
least 25% accuracy 

𝜒ఈ ൌ  𝜒ଶହ  0.75  

 The prognostic system must predict failure at least one-
half of the prognostic distance before failure with at least 
10% accuracy 

𝜒ఈ ൌ  𝜒ଵ  0.50 

2.4.2. Example 1, Failed to Meet Requirements 

Referring to Figure 17, first criterium, 𝑃𝐷ெ , is met, the 
second criterium, 𝜒ଶହ, is met, and the third criterium, 𝜒ଵ, is 
not met.  

2.4.3.  Example 2, Met Requirements 

Referring to Figure 18, the first two criteria (𝑃𝐷ெ and χଶହ) 
are well within requirements and the third criterium, χଵ, is 
barely within specifications. 



CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019 

PHM Society 2019 Conference    7 
Scottsdale, AZ  24-27 Sep. 2019 

2.4.4. Example 3, Far Exceeded Requirement 

As seen in Figure 19, all criteria are easily met. 

Figure 17. Example RUL and PH plots: failure to meet 
accuracy requirements 

 
Figure 18. Example RUL and PH plots all criteria exceed 
requirements 

  
Figure 19. Example RUL and PH plots: far exceeds 

requirement for   

3. CONCLUSION 

This paper provides an explanation for inaccuracies using an 
 method, which is relative to RUL, an ever-decreasing 
denominator. An alternative method, -margin of accuracy, 
which is PH relative to a fixed value parameter, PD, in the 
denominator: refer back to EQ. (26) and compare to EQ. (22). 
A figure of merit, Convergence Efficiency, was developed 
and examples were used to illustrate the use of Convergence 
Efficiency: EQ. (25) and EQ. (26).  
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