
 978-1-6654-9032-0/23/$31.00 ©2023 IEEE

 1

Approaches to Embed a Software-based Adaptive

Prognostic Estimation Kernel into a PHM System-on-

Chip

James Hofmeister
Ridgetop Group, Inc.
3580 West Ina Road
Tucson, AZ 86741
520-742-3300x107

jhofmeister@ridgetopgroup.com

Wyatt Pena
Ridgetop Group, Inc.
3580 West Ina Road
Tucson, AZ 86741
520-742-3300x702

wpena@ridgetopgroup.com

Christopher Curti
 Ridgetop Group, Inc. 3580

West Ina Road
Tucson, AZ 86741
520-742-3300x704

ccurti@ridgetopgroup.com

Abstract—This paper presents considerations and

approaches related to embedding a software-based Adaptive

Prognostic Estimation kernel into a Prognostic Health

Management System-on-Chip (PHM SoC). Ridgetop Group’s

Adaptive Remaining Useful Life Estimation™ (ARULE™)

software suite includes a two-stage Adaptive Prognostic

Estimation kernel comprising robust, accurate, and a fast-

converging predictive analytics kernel to produce meaningful

prognostic estimates for State-of-Health (SoH), Remaining

Useful Life (RUL), and Prognostic Horizon (PH). Existing PHM

Standards and practices typically require a combination of

hardware, firmware, and software elements for Sensors (S),

Data Acquisition (DA), Data Management (DM), State

Detection (SD), Health Assessment (HA), Prognostic

Assessment (PA), Advisory Generation (AG), and Health

Management (HM). For many PHM applications it is

impractical to have a single SoC comprising all of the described

PHM elements. We believe a more feasible and practical

approach is to provide a PHM SoC solution having a

multiplicity of sensors, microcontrollers, and a single Adaptive

Prognostic Estimation SoC. The approach separates each PHM

element into four overlapped groups: (1) S, DA, and DM; (2)

DM, SD, and HA; (3) HA, PA, and AG; (4) AG and HM. Group

1 produces Feature Data (FD) that is extracted from Condition-

Based Data (CBD) and has a characteristic signature that is

highly correlated to degradation leading to failure. Groups 2

and 3 are a realization of group 2 and 3 as a single, two-stage

SoC solution. Prognostication of a commercial-off-the-shelf

quadcopter is used as an example to demonstrate a design of a

PHM SoC in which AG is through light-emitting diodes (LED)

and HM is initiated by an operator. A summary, conclusion, and

follow-on activity section ends the paper.

Keywords—SoC, RUL, SoH, PH, predictive, prognostics,

PHM, APK

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. APPROACH: SIMPLIFY ARULE APK 4
3. APPROACH: REPLACE FILE-BASED METHODS

MORE SUITABLE FOR PHM SOC 4
4. APPROACH: DESIGN, DEVELOP, AND PERFORM

TESTBENCHES ... 6
5. APPROACH: DESIGN, DEVELOP, AND PERFORM

DEMONSTRATION PROOF OF PHM SOC 7

6. SUMMARY AND CONCLUSION 8
ACKNOWLEDGEMENTS .. 8
REFERENCES ... 9
BIOGRAPHY ... 9

1. INTRODUCTION

This paper presents approaches to embed a software-

based Adaptive Prognostic Estimation (APK) kernel (Figure

1) into a Prognostic Health Management (PHM) system-on-

chip (SoC). As an initial assessment this “seems

straightforward:” port software, with some modifications,

into a microprocessor on a printed circuit board (PCB) and

test to verify and validate – the need to design and develop at

least one testbench (TB) for the PHM SoC.

We started with the IEEE 1856-2017 Standard

Framework for Prognostics and Health Management of

Electronic Systems and compared it to the envisioned PHM

SoC as illustrated in Figure 2 and Figure 3. We then mapped

Figure 3 to an existing hardware-software solutions (Figure

4). Figure 5 is a block diagram of an application program

called UD_ARULE™ (User Data for Adaptive Remaining

Useful Life Estimator™) that interfaces with a realized APK:

the object module called ARULE.

Figure 4 and Figure 5 were used as the foundation for

developing approaches to realize a PHM SoC as a multiple

chip solution to achieve the following goals:

• Successful creation of a software version of ARULE for

loading as firmware into a microprocessor: ARULE-on-

chip with suitable functionality for PHM SoC solutions

(right-hand side of Figure 5).

• Successful design and development of a software-based

testbench (TB) to verify and validate a firmware version

of ARULE and its interface to other chips.

• Successful export of ARULE as an APK into a

microprocessor chip to support PHM SoC.

• Successful design and development of hardware-based

TB to verify and validate the ARULE-on-chip solution.

 2

• Successful export of the TB(s) to a realized

demonstration of a prognostic-enabled, handheld

quadcopter.

This paper describes the following approaches:

• Create a simplified version of ARULE with suitable

functionality for a chip-based solution.

• Replace file-based-definition methods with methods

more suitable for the PHM SoC to include the

following: support for system configurability,

extendibility, and customization; support for

checkpoint/restart mode of operation; and support for

data acquisition and output.

• Eliminate current messaging and logging support, and

improve support for health-related alerts.

• Design, develop, and perform TBs to verify and validate

approaches and solutions,

• Design, develop, and demonstrate a proof of concept for

a PHM SoC solution that uses ARULE-on-chip.

Figure 1. Block diagram of an Adaptive Prognostic Kernel (APK) comprising two stages, each of which uses a form of

Kalman filtering

Figure 2. Relationship: IEEE 1856-2017 to the example APK shown in Figure 1

 3

Figure 3. Block diagram representation of a realized, IEEE 1856-2017 compliant PHM system using a two-stage APK

Figure 4. Block diagram: software-based testbench with UD_ARULE™ using an ARULE version of an APK

 4

Figure 5. Block diagram: software-application program (executable) with embedded APK (object module)

2. APPROACH: SIMPLIFY ARULE APK

Software solutions are often replete with optional

processing such as do A then B or do A then C. Our ARULE

example of an APK, started out going directly from input

feature data (FD) to Kalman Filtering (KF). Then the ability

to transform FD signature data to Fault-to-Failure

Progression (FFP) signature data was added to simplify data

modeling followed by the ability to transform FFP signature

data to Functional Failure Signature (FFS) data to simplify

KF modeling; then transforming FFP data to Degradation

Progression Signature (DPS) data to linearize curvilinear data

to improve accuracy was added; and then KF was extended

by adding a FFS data modeling step before the final KF and

prediction processing. In addition to supporting selective

sequencing, ARULE supports data smoothing of FD and/or

FFP and/or FFS signatures. ARULE supports many input

parameters and values that are not essential for producing

accurate estimates of prognostic information.

We presented at this conference a paper that showed the

feasibility of using a single family, rather than seven families,

of DPS models; a single, optional data smoothing (FD); and

fixed sequence of data and EKF processing: “Reducing

Signature Models for Extended Kalman Filtering for

Adaptive Prognostic Estimation” – see Figure 6 and Figure

7. The number of input parameters to control the operation of

ARULE is reduced from 19 to nine and an additional 12

parameters used to support plotting are eliminated.

3. APPROACH: REPLACE FILE-BASED METHODS

MORE SUITABLE FOR PHM SOC

The ARULE example of an APK uses file-based methods

to support the following: (1) definition files to configure,

extend, and customize systems; (2) checkpoint/restart

support; and (3) data acquisition and output. Those methods

need to be replaced with methods suitable for PHM SoC –

specifically, no reading or writing of direct-access storage

devices (DASD).

A. System and Definitions

Readable and editable system and node definition files in

c:\ARULE\DEFS\SDEF\ and c:\ARULE\DEFS\NDEF\

directories (Figure 4) are used to specify how systems are

configured and how their nodes are processed. A method

more suitable for PHM SoC is to include defined structures

in a firmware APK along with an input to select which system

instantiation applies.

Given a simplified version of ARULE as previously

described, create structures equivalent to solution definitions

that are embedded: no reading, no parsing, no interpretation,

and no checking syntax, data type, or range of values.

 5

Figure 6. Example of full list of input parameters for ARULE prior to simplification

Figure 7. Example of full list of input parameters for ARULE after simplification

 6

Figure 8 illustrates the concept of a predefined System

Definition (SDEF) structure that points to two nodes, XFD1

and XFD2: the figure also illustrates the concept of a

predefined Node Definition (NDEF) structure and Figure 10

illustrates the concept of API work areas in nonvolatile

memory to update/save/restore definition and operational

information.

Figure 8. Example of pre-built structures

The microprocessor could be loaded with, for example,

one to n predefined system definitions for specific solutions

for prognostic applications. A select option could be provided

for configurability. There are two primary marketing

approaches: (1) APK microprocessors are pre-loaded as

previously described, and/or (2) methods/means are made

available for loading in and using user-defined definition

structures: decision as to which (or even both) to be made

later. The structures would be selected and loaded into non-

volatile memory as part of an API area (see Figure 9 and

Figure 10).

Figure 9. Example API showing a node header

The example of an API work area shown in Figure 9

comprises the entire non-volatile memory required to process

a single FD data point and produce estimates of prognostic

information: data conditioning, data transforms, two stages of

KF, and prognostic estimation. The area also comprises the

necessary and sufficient information to support sampling

intervals and checkpoint/restart.

B. Checkpoint/Restart

The software version of ARULE uses file storage to save

and restore work areas between processing of sampled data.

A method suitable for PHM SoC applications is to use non-

volatile read/write memory to save and restore work areas.

The memory could be segmented into blocks: one block for

each node of the system (see Figure 10).

C. Data Acquisition and Output

Instead of accessing and outputting data from and into

files, the APK microprocessor would have a front-end data

interface to communicate with and exchange data with

application-specific chips (Figure 10).

Figure 10. Concept: APK and nonvolatile memory

D. Eliminate Messaging and Logging

As is typical for software-based programs, the front-end

program, UD_ARULE to the ARULE example of an APK

issues messages: informational, warning, errors, and alerts to

both a serial device and/or to a message log. For this effort,

which does not comprise any textual visualization, messaging

and logging is eliminated. The use of return and reason codes

shall be retained in limited form: 0, 4, 8, and 12 return codes

for, respectively, no error, warning, error, and severe and an

accompanying reason, which shall be an identifier to where

an error was detected. The return/reason codes are intended

to aid in development.

4. APPROACH: DESIGN, DEVELOP, AND

PERFORM TESTBENCHES

A. PHM SoC

We do not believe it is viable to design and develop a

single PHM SoC if, for no other reason than the existence of

sensors and sensor processing units (SPUs). The presented

approaches allow for at least two approaches to use an APK

microprocessor chip: (1) as a separately packaged product for

use by customer-designed and developed applications and/or

packaged as part of a multiple chip module as a plug-in

application-specific solution: see Figure 11.

 7

Figure 11. Concept: PHM SoC comprising multiple

sensors to be controlled and managed as a single system

B. Test Benches

A test bench (TB) is used to verify and validate correct

operation for both software and firmware. Using Figure 11 as

a guide, the following is an approach for bench testing and

for design and development of a chip set for demonstration

of proof:

• Design, develop, and perform a TB for the APK Chip.

The TB needs to comprise the functionality of an

application-specific Data Manager and Control (DMC)

as shown in Figure 12.

Figure 12. TB diagram for an APK-on-Chip

• Convert the TB for the APK chip into an application-

specific DMC that interfaces to the APK chip.

• Design, develop, and perform a TB for a DMC-on-chip

connected to the APK-on-chip as illustrated in Figure

13.

Figure 13. TB diagram for connected DMC and APK

• Convert the TB for the APK chip into an application-

specific DMC that interfaces to the APK chip.

• Design, develop, and perform a TB for the SPUs as

illustrated in Figure 14.

Figure 14. TB diagram for one or more SPUs connected

to one or more DMCs connected to an APK

5. APPROACH: DESIGN, DEVELOP, AND

PERFORM DEMONSTRATION PROOF OF PHM

SOC

We choose a hand-launched, commercial quadcopter to

be prognostic enabled for a demonstration proof of the PHM

SoC in general and the APK-on-chip specifically: see Figure

15.

 8

A. Demonstration: Prognostic-enabling Approaches

Prognostic-enabling approaches include the following:

(1) sensor at each rotating assembly (RA) to detect excessive

and/or unbalanced vibration forces indicative of problems

with the RA motor, strut-mounting, blade, and/or shaft; and

(2) a centric-mounted sensor to detect problems with one or

more RAs.

Figure 15. Demonstration concept: design of

experiment for a quadcopter

B. RA Sensor Approaches

The RA sensor approach uses a microelectromechanical

system (MEMS): to detect and collect vibration-force data.

When the quadcopter is on the verge of lifting or at hover, the

forces for each RA should be (1) at or below a minimum lift-

off threshold and (2) the force for each RA should be

approximately equal to its nearest neighbors.

The centric-mounted sensor is believed to be necessary to

detect when the quadcopter is just below the lift force for

vertical flight: no forward-backward and no sideways

movement. This is the preflight zone during which the RA

sensors should be sensed.

C. Design of Experiment

The experiment design is to mount a MEMS-based,

triaxial-sensor unit to each RA to monitor and collect

vibration data and then wirelessly transmit that data to a

ground-based hub. Another MEMS-based, triaxial-sensor or

inertial measurement unit (IMU) shall be mounted on the top

of the body of the quad-copter to also monitor, collect, and

transmit vibration data.

A to-be-determined number of cyclic regimes shall be

run:

• All RAs undamaged.

• Data analyses to characterize data for undamaged states:

at rest idling, increasing blade speed from idle to

hovering.

• Damaged RA for at least one of the following: blade

damage, shaft binding, bent strut, and degraded motor.

• Data analyses to characterize data for varying levels of

damage and to determine the efficacy of a centric-

mounted sensor either in lieu of or in addition to RA

sensors.

• Design a fault-detection display method for a

demonstration to prove successful APK-on-chip in a

PHM SoC

• Run a two-stage demonstration: (1) undamaged and (2)

damaged.

6. SUMMARY AND CONCLUSION

This paper presented an introduction to an example APK

(Figure 1) primarily comprising the SD, HA, and PA

elements of IEEE 1856-2017 with some front-end DM

(Figure 2). The APK was then shown embedded in an

example PHM system (Figure 3) and configured in a

software-based TB (Figure 4 and Figure 5).

Approaches to realize successful export of the example

APK to an APK-on-chip for use in a PHM SoC included the

following: (1) simplify the example APK by eliminating

unneeded/unwanted options, complex configuration and

customization, and file-based messages and logging; (2)

design, develop, and perform TB to accomplish a step-wise

design and development; and (3) a final approach comprising

the design, development, and performance of a

demonstration to prove APK-on-chip operation in a PHM

SoC. For the demonstration, we plan on prognostic-enabling

a hand-launched quadcopter: each of the RAs and a centric-

mounted, MEMS-based sensor on the top of the body of the

quadcopter.

We believe the approaches presented in this paper shall

result in successful export of a software-based APK to an

APK-on-chip solution in a PHM SoC, UD_ARULE, and the

ARULE kernel to be revised and loaded into a

microprocessor chip to support PHM SoC.

ACKNOWLEDGEMENTS

The authors thank Naval Air, Naval Sea, U.S. Army, U.S.

Air Force, NASA research centers, and Idaho National

Laboratories for their support and funding of multiple

projects that led to the design, development, and

commercialization of ARULE: the ARULE GUI,

UD_ARULE, and the ARULE kernel to be revised and

loaded into a microprocessor chip to support PHM SoC.

 9

REFERENCES

[1] 1856-2017 IEEE Standard Framework for Prognosis and

Health Management of Electronic Systems, Dec. 2017.

[2] Goodman, Douglas L.; Hofmeister, James P.; and

Szidarovszky, Ferenc, 2019; Prognostics and Health

Management: A Practical Approach Using Conditioned-

Based Data, 1st Edition, John Wiley & Sons, Ltd, The

Atrium, Southern Gate, Chichester, West Sussex, PO19

8SQ, United Kingdom, ISBN: 9781119356653, 2019.

[3] Hofmeister, J., Pena, W., and Curti, C., 2023; “Reducing

Signature Models for Extended Kalman Filtering for

Adaptive Prognostic Estimation,” 2023 IEEE Aerospace

Conference, Big Sky, MT, 4-11 March, 2023.

BIOGRAPHY

James Hofmeister received an

M.S. in Elec. & Computer

Engineering from the University

of Arizona, Tucson, (2002), a B.S.

in Electrical Engineering from

the University of Hawai’i,

Honolulu (1993), and is a

graduate of IBM’s Systems

Research Institute (1986):

Science and Engineering of Computer-oriented Systems.

After a 30-year career with IBM and five years of retirement,

he joined Ridgetop Group, Inc. in 2003. He is currently a

Distinguished Engineer and Principal Investigator in

diagnostic and prognostic health monitoring/management

systems. His accomplishments include seven issued U.S.

patents; and over 50 published papers, articles, and a book

in the Wiley Reliability Engineering series. He is an IEEE

Senior Life Member, and an elected Fellow of the Society for

machinery Failure Prevention Technology (MFPT), an

emeritus member of the Board of Directors of MFPT, and is

a member of the IEEE Reliability Society

Wyatt Pena received a B.S. in

Engineering Management with a

technical minor in Systems

Engineering from the University

of Arizona (2017). Wyatt is the

Director of Operations at

Ridgetop Group and has been

with the company for

approximately 6+ years. By

utilizing his strong background

in systems engineering and project management, Wyatt

oversees day-to-day operations to ensure that engineering

and business development activities are in direct alignment

with the interest of Ridgetop’s customers, shareholders, and

overall company mission. Wyatt has played a key role in

managing all aspects of product design, development, and

deployment of multifaceted Ridgetop solutions comprising

hardware, firmware, and software elements. Wyatt has most

recently been leading the transition of Ridgetop IP to

commercial products and solutions that are being utilized

around the globe. Prior to becoming the Director of

Operations, Wyatt has served as a Project Manager, Systems

Engineer, and Test Engineer on numerous government and

commercial contracts. Other core strengths include an in-

depth understanding in engineering management, cost

estimation, supply chain management, as well as prototype

design and manufacturing of CBM, PHM, and IVHM

solutions.

 10

Christopher Curti has two BS

degrees from the University of

Arizona: Molecular & Cellular

Biology and Electrical & Computer

Engineering. He joined Ridgetop

Group, Inc in 2019 and is an

experienced software engineer and

contributes to the design and

development of commercial PHM

and CBM software products and solutions.

