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Abstract—This paper presents considerations and 

approaches related to embedding a software-based Adaptive 

Prognostic Estimation kernel into a Prognostic Health 

Management System-on-Chip (PHM SoC). Ridgetop Group’s 

Adaptive Remaining Useful Life Estimation™ (ARULE™) 

software suite includes a two-stage Adaptive Prognostic 

Estimation kernel comprising robust, accurate, and a fast- 

converging predictive analytics kernel to produce meaningful 

prognostic estimates for State-of-Health (SoH), Remaining 

Useful Life (RUL), and Prognostic Horizon (PH). Existing PHM 

Standards and practices typically require a combination of 

hardware, firmware, and software elements for Sensors (S), 

Data Acquisition (DA), Data Management (DM), State 

Detection (SD), Health Assessment (HA), Prognostic 

Assessment (PA), Advisory Generation (AG), and Health 

Management (HM). For many PHM applications it is 

impractical to have a single SoC comprising all of the described 

PHM elements. We believe a more feasible and practical 

approach is to provide a PHM SoC solution having a 

multiplicity of sensors, microcontrollers, and a single Adaptive 

Prognostic Estimation SoC. The approach separates each PHM 

element into four overlapped groups: (1) S, DA, and DM; (2) 

DM, SD, and HA; (3) HA, PA, and AG; (4) AG and HM. Group 

1 produces Feature Data (FD) that is extracted from Condition-

Based Data (CBD) and has a characteristic signature that is 

highly correlated to degradation leading to failure. Groups 2 

and 3 are a realization of group 2 and 3 as a single, two-stage 

SoC solution. Prognostication of a commercial-off-the-shelf 

quadcopter is used as an example to demonstrate a design of a 

PHM SoC in which AG is through light-emitting diodes (LED) 

and HM is initiated by an operator. A summary, conclusion, and 

follow-on activity section ends the paper. 

Keywords—SoC, RUL, SoH, PH, predictive, prognostics, 

PHM, APK 
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1. INTRODUCTION 

This paper presents approaches to embed a software-

based Adaptive Prognostic Estimation (APK) kernel (Figure 

1) into a Prognostic Health Management (PHM) system-on-

chip (SoC). As an initial assessment this “seems 

straightforward:” port software, with some modifications, 

into a microprocessor on a printed circuit board (PCB) and 

test to verify and validate – the need to design and develop at 

least one testbench (TB) for the PHM SoC.  

We started with the IEEE 1856-2017 Standard 

Framework for Prognostics and Health Management of 

Electronic Systems and compared it to the envisioned PHM 

SoC as illustrated in Figure 2 and Figure 3.  We then mapped 

Figure 3 to an existing hardware-software solutions (Figure 

4). Figure 5 is a block diagram of an application program 

called UD_ARULE™ (User Data for Adaptive Remaining 

Useful Life Estimator™) that interfaces with a realized APK: 

the object module called ARULE. 

Figure 4 and Figure 5 were used as the foundation for 

developing approaches to realize a PHM SoC as a multiple 

chip solution to achieve the following goals: 

• Successful creation of a software version of ARULE for 

loading as firmware into a microprocessor: ARULE-on-

chip with suitable functionality for PHM SoC solutions 

(right-hand side of Figure 5). 

• Successful design and development of a software-based 

testbench (TB) to verify and validate a firmware version 

of ARULE and its interface to other chips. 

• Successful export of ARULE as an APK into a 

microprocessor chip to support PHM SoC.  

• Successful design and development of hardware-based 

TB to verify and validate the ARULE-on-chip solution. 
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• Successful export of the TB(s) to a realized 

demonstration of a prognostic-enabled, handheld 

quadcopter. 

This paper describes the following approaches: 

• Create a simplified version of ARULE with suitable 

functionality for a chip-based solution. 

• Replace file-based-definition methods with methods 

more suitable for the PHM SoC to include the 

following: support for system configurability, 

extendibility, and customization; support for 

checkpoint/restart mode of operation; and support for 

data acquisition and output. 

• Eliminate current messaging and logging support, and 

improve support for health-related alerts. 

• Design, develop, and perform TBs to verify and validate 

approaches and solutions, 

• Design, develop, and demonstrate a proof of concept for 

a PHM SoC solution that uses ARULE-on-chip.  

 

Figure 1. Block diagram of an Adaptive Prognostic Kernel (APK) comprising two stages, each of which uses a form of 

Kalman filtering 

 

Figure 2. Relationship: IEEE 1856-2017 to the example APK shown in Figure 1 
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Figure 3. Block diagram representation of a realized, IEEE 1856-2017 compliant PHM system using a two-stage APK  

 

Figure 4. Block diagram: software-based testbench with UD_ARULE™ using an ARULE version of an APK 
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Figure 5. Block diagram: software-application program (executable) with embedded APK (object module) 

 

2. APPROACH: SIMPLIFY ARULE APK 

Software solutions are often replete with optional 

processing such as do A then B or do A then C.  Our ARULE 

example of an APK, started out going directly from input 

feature data (FD) to Kalman Filtering (KF). Then the ability 

to transform FD signature data to Fault-to-Failure 

Progression (FFP) signature data was added to simplify data 

modeling followed by the ability to transform FFP signature 

data to Functional Failure Signature (FFS) data to simplify 

KF modeling; then transforming FFP data to Degradation 

Progression Signature (DPS) data to linearize curvilinear data 

to improve accuracy was added; and then KF was extended 

by adding a FFS data modeling step before the final KF and 

prediction processing. In addition to supporting selective 

sequencing, ARULE supports data smoothing of FD and/or 

FFP and/or FFS signatures. ARULE supports many input 

parameters and values that are not essential for producing 

accurate estimates of prognostic information.  

We presented at this conference a paper that showed the 

feasibility of using a single family, rather than seven families, 

of DPS models; a single, optional data smoothing (FD); and 

fixed sequence of data and EKF processing: “Reducing 

Signature Models for Extended Kalman Filtering for 

Adaptive Prognostic Estimation” – see Figure 6 and Figure 

7. The number of input parameters to control the operation of 

ARULE is reduced from 19 to nine and an additional 12 

parameters used to support plotting are eliminated.      

3. APPROACH: REPLACE FILE-BASED METHODS 

MORE SUITABLE FOR PHM SOC 

The ARULE example of an APK uses file-based methods 

to support the following: (1) definition files to configure, 

extend, and customize systems; (2) checkpoint/restart 

support; and (3) data acquisition and output. Those methods 

need to be replaced with methods suitable for PHM SoC – 

specifically, no reading or writing of direct-access storage 

devices (DASD). 

A. System and Definitions 

Readable and editable system and node definition files in 

c:\ARULE\DEFS\SDEF\ and c:\ARULE\DEFS\NDEF\ 

directories (Figure 4) are used to specify how systems are 

configured and how their nodes are processed. A method 

more suitable for PHM SoC is to include defined structures 

in a firmware APK along with an input to select which system 

instantiation applies. 

Given a simplified version of ARULE as previously 

described, create structures equivalent to solution definitions 

that are embedded: no reading, no parsing, no interpretation, 

and no checking syntax, data type, or range of values.   
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Figure 6. Example of full list of input parameters for ARULE prior to simplification 

 

Figure 7. Example of full list of input parameters for ARULE after simplification 
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Figure 8 illustrates the concept of a predefined System 

Definition (SDEF) structure that points to two nodes, XFD1 

and XFD2: the figure also illustrates the concept of a 

predefined Node Definition (NDEF) structure and Figure 10 

illustrates the concept of API work areas in nonvolatile 

memory to update/save/restore definition and operational 

information.  

 

Figure 8. Example of pre-built structures 

The microprocessor could be loaded with, for example, 

one to n predefined system definitions for specific solutions 

for prognostic applications. A select option could be provided 

for configurability. There are two primary marketing 

approaches: (1) APK microprocessors are pre-loaded as 

previously described, and/or (2) methods/means are made 

available for loading in and using user-defined definition 

structures: decision as to which (or even both) to be made 

later. The structures would be selected and loaded into non-

volatile memory as part of an API area (see Figure 9 and 

Figure 10). 

 

 

Figure 9. Example API showing a node header 

The example of an API work area shown in Figure 9 

comprises the entire non-volatile memory required to process 

a single FD data point and produce estimates of prognostic 

information: data conditioning, data transforms, two stages of 

KF, and prognostic estimation. The area also comprises the 

necessary and sufficient information to support sampling 

intervals and checkpoint/restart. 

B. Checkpoint/Restart 

The software version of ARULE uses file storage to save 

and restore work areas between processing of sampled data. 

A method suitable for PHM SoC applications is to use non-

volatile read/write memory to save and restore work areas. 

The memory could be segmented into blocks: one block for 

each node of the system (see Figure 10). 

C. Data Acquisition and Output 

Instead of accessing and outputting data from and into 

files, the APK microprocessor would have a front-end data 

interface to communicate with and exchange data with 

application-specific chips (Figure 10).  

 

Figure 10. Concept: APK and nonvolatile memory 

D.  Eliminate Messaging and Logging 

As is typical for software-based programs, the front-end 

program, UD_ARULE to the ARULE example of an APK 

issues messages: informational, warning, errors, and alerts to 

both a serial device and/or to a message log. For this effort, 

which does not comprise any textual visualization, messaging 

and logging is eliminated. The use of return and reason codes 

shall be retained in limited form: 0, 4, 8, and 12 return codes 

for, respectively, no error, warning, error, and severe and an 

accompanying reason, which shall be an identifier to where 

an error was detected. The return/reason codes are intended 

to aid in development. 

4. APPROACH: DESIGN, DEVELOP, AND 

PERFORM TESTBENCHES 

A. PHM SoC 

We do not believe it is viable to design and develop a 

single PHM SoC if, for no other reason than the existence of 

sensors and sensor processing units (SPUs). The presented 

approaches allow for at least two approaches to use an APK 

microprocessor chip: (1) as a separately packaged product for 

use by customer-designed and developed applications and/or 

packaged as part of a multiple chip module as a plug-in 

application-specific solution: see Figure 11.  
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Figure 11. Concept: PHM SoC comprising multiple 

sensors to be controlled and managed as a single system 

B. Test Benches 

A test bench (TB) is used to verify and validate correct 

operation for both software and firmware. Using Figure 11 as 

a guide, the following is an approach for bench testing and 

for design and development of a chip set for demonstration 

of proof: 

• Design, develop, and perform a TB for the APK Chip. 

The TB needs to comprise the functionality of an 

application-specific Data Manager and Control (DMC) 

as shown in Figure 12. 

 

Figure 12. TB diagram for an APK-on-Chip 

• Convert the TB for the APK chip into an application-

specific DMC that interfaces to the APK chip. 

• Design, develop, and perform a TB for a DMC-on-chip 

connected to the APK-on-chip as illustrated in Figure 

13. 

 

Figure 13. TB diagram for connected DMC and APK 

• Convert the TB for the APK chip into an application-

specific DMC that interfaces to the APK chip. 

• Design, develop, and perform a TB for the SPUs as 

illustrated in Figure 14. 

 

Figure 14. TB diagram for one or more SPUs connected 

to one or more DMCs connected to an APK 

5. APPROACH: DESIGN, DEVELOP, AND 

PERFORM DEMONSTRATION PROOF OF PHM 

SOC  

We choose a hand-launched, commercial quadcopter to 

be prognostic enabled for a demonstration proof of the PHM 

SoC in general and the APK-on-chip specifically: see Figure 

15.  
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A. Demonstration: Prognostic-enabling Approaches 

Prognostic-enabling approaches include the following: 

(1) sensor at each rotating assembly (RA) to detect excessive 

and/or unbalanced vibration forces indicative of problems 

with the RA motor, strut-mounting, blade, and/or shaft; and 

(2) a centric-mounted sensor to detect problems with one or 

more RAs. 

 

Figure 15. Demonstration concept: design of 

experiment for a quadcopter 

B. RA Sensor Approaches 

The RA sensor approach uses a microelectromechanical 

system (MEMS):  to detect and collect vibration-force data. 

When the quadcopter is on the verge of lifting or at hover, the 

forces for each RA should be (1) at or below a minimum lift-

off threshold and (2) the force for each RA should be 

approximately equal to its nearest neighbors. 

The centric-mounted sensor is believed to be necessary to 

detect when the quadcopter is just below the lift force for 

vertical flight: no forward-backward and no sideways 

movement. This is the preflight zone during which the RA 

sensors should be sensed. 

C. Design of Experiment 

The experiment design is to mount a MEMS-based, 

triaxial-sensor unit to each RA to monitor and collect 

vibration data and then wirelessly transmit that data to a 

ground-based hub. Another MEMS-based, triaxial-sensor or 

inertial measurement unit (IMU) shall be mounted on the top 

of the body of the quad-copter to also monitor, collect, and 

transmit vibration data. 

A to-be-determined number of cyclic regimes shall be 

run: 

• All RAs undamaged. 

• Data analyses to characterize data for undamaged states: 

at rest idling, increasing blade speed from idle to 

hovering. 

• Damaged RA for at least one of the following: blade 

damage, shaft binding, bent strut, and degraded motor. 

• Data analyses to characterize data for varying levels of 

damage and to determine the efficacy of a centric-

mounted sensor either in lieu of or in addition to RA 

sensors. 

• Design a fault-detection display method for a 

demonstration to prove successful APK-on-chip in a 

PHM SoC 

• Run a two-stage demonstration: (1) undamaged and (2) 

damaged. 

6. SUMMARY AND CONCLUSION 

This paper presented an introduction to an example APK 

(Figure 1) primarily comprising the SD, HA, and PA 

elements of IEEE 1856-2017 with some front-end DM 

(Figure 2). The APK was then shown embedded in an 

example PHM system (Figure 3) and configured in a 

software-based TB (Figure 4 and Figure 5). 

Approaches to realize successful export of the example 

APK to an APK-on-chip for use in a PHM SoC included the 

following: (1) simplify the example APK by eliminating 

unneeded/unwanted options, complex configuration and 

customization, and file-based messages and logging; (2) 

design, develop, and perform TB to accomplish a step-wise 

design and development; and (3) a final approach comprising 

the design, development, and performance of a 

demonstration to prove APK-on-chip operation in a PHM 

SoC. For the demonstration, we plan on prognostic-enabling 

a hand-launched quadcopter: each of the RAs and a centric-

mounted, MEMS-based sensor on the top of the body of the 

quadcopter. 

We believe the approaches presented in this paper shall 

result in successful export of a software-based APK to an 

APK-on-chip solution in a PHM SoC, UD_ARULE, and the 

ARULE kernel to be revised and loaded into a 

microprocessor chip to support PHM SoC.   
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