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Abstract—This paper investigates the influence of environmen-
tal and operational variables on the longevity of spacecraft com-
ponents, with a specific focus on estimating Remaining Useful Life
(RUL), Prognostic Horizon (PH), and State-of-Health (SoH) for
reaction wheels afflicted by static friction faults. Emphasizing the
significance of fault tolerance in spacecraft hardware, we ascertain
the threshold at which component functionality is substantially
compromised. Using the Rolling Root-Mean-Square (RRMS) of
the reaction wheel’s static friction profile over time as Feature
Data (FD) within a 10-minute time frame for two fault scenarios
- one-time and repeated occurrences, our analysis demonstrates a
direct relationship between fault instances and FD escalation. This
correlation is further elucidated by integrating Fault-to-Failure
Progression (FFP) FD into the Adaptive Remaining Useful Life
Estimator (ARULE) for prognostic assessment, shedding light on
the challenges and ramifications of mechanical faults on attitude
control systems. ARULE predicts complete degradation in both
fault cases within 500 mins of spacecraft flight time. Our study
underscores the pivotal role of predictive analytics in spacecraft
health management, particularly in optimizing performance and
prolonging the service life of critical hardware amidst operational
challenges in orbit.

I. INTRODUCTION

Space missions are complicated and require extreme pre-
cision of attitude control [1]. While it is possible to have a
scenario where attitude control is required only during certain
portions of the trajectory or even phases, nonetheless, attitude
control is a critical aspect and task for any spacecraft. Actuators
to control the attitude are selected depending on the size of
the spacecraft and mission profile. The most commonly used
mechanisms for attitude control are the momentum exchange
devices. Within this category, the Variable Speed Control
Moment Gyroscopes (VSCMGs) are most efficient. However,
the increased complexity and failure points make it a secondary
choice. Reaction wheels are the most popular and used devices
for attitude control on-board spacecrafts. The guidance module
typically computes the attitude error based on sensor fusion of
gyroscopic measurements with an online estimator such as a
Kalman filter, and drives the reaction wheels to achieve zero
attitude error. Full three-axis control generally comprises of
three or more reaction wheels. Commonly used configurations
include a NASA configuration and a pyramid configuration. As

with any mechanical system or device, the reaction wheels are
also susceptible to failure. These failures do not immediately
result in non-operational status of the wheels, but increase wear
of the device [2]. Prolonged use of these devices under fault
leads to faster degradation and total physical failure. Thus, it
becomes crucial to predict the Remaining Useful Life (RUL),
Prognostic Horizon (PH), and State-of-Health (SoH) of these
devices. Machine learning (ML) algorithms have been used to
detect the fault apriori and produce prognostic estimates [3] [4]

[5]. However, several challenges must be addressed to leverage
ML effectively in space missions.

One of the primary challenges is the quality of data available
for training ML models. Space missions often operate with
limited datasets due to the high cost and duration constraints.
Obtaining sufficient labeled data for training ML models can
be challenging, and telemetry data may contain noise or uncer-
tainties due to environmental factors or sensor inaccuracies [6].
Interpretability is another critical challenge in the adoption of
ML for spacecraft applications. Many ML algorithms such as
deep neural networks are considered black box models making
it difficult to interpret their decision-making processes. This
lack of transparency can pose challenges in gaining trust and
understanding the behavior of ML-based systems, especially
in safety-critical applications like spacecraft operations [7].
Additionally, computational resources onboard spacecraft are
often limited, including processing power and memory. ML
algorithms deployed for real-time processing of telemetry data
must be computationally efficient and lightweight to operate
within these constraints. Furthermore, ML models must be
capable of making timely predictions within the constraints
of spacecraft operations, requiring optimization for speed and
efficiency [8]. Generalization and adaptation of ML models
present further challenges. ML models trained on historical
data must generalize well to unseen scenarios and environments
encountered during space missions. Moreover, space environ-
ments are dynamic, and ML models must adapt to changes
in operating conditions, sensor characteristics, and spacecraft
dynamics to maintain their performance and reliability over
mission duration [9].

Reaction wheels can fail in various ways, including bearing



wear, lubrication issues, or electronics failure. Each failure
mode (FM) has its unique set of condition indicators (CIs),
making it challenging to develop a one-size-fits-all algorithm
for real-time on-orbit monitoring. A sophisticated Failure
Modes and Effects Analysis (FMEA) is required to build
a library of FMs and explore their complexities. In many
spacecraft designs, reaction wheels are critical components,
and redundancy may be limited due to constraints such as
mass, volume, and power. In case of failure, the spacecraft may
have limited backup systems, making it crucial to accurately
predict RUL to plan for potential replacements or adjustments
in operations. Reaction wheel performance can change over
time due to wear, making it challenging to rely solely on static
models. Incorporating adaptive modeling techniques that can
adjust to changing conditions and performance degradation is
crucial for accurate real-time assessments.

In this paper, we present a proof-of-concept for predicting
the prognostic estimates of reaction wheels undergoing two dif-
ferent fault scenarios - one-time fault and repeated faults using
Ridgetop’s Adaptive Remaining Useful Life Estimator [10], a
predictive analytics software tool compliant with IEEE 1856-
2017 PHM Standard Framework for Prognostics and Health
Management of Electronic Systems [11]. Given sensor feature
data that are above a predefined “good-as-new” floor and below
a “failed” ceiling, ARULE employs an advanced prediction
method related to Extended Kalman filtering (EKF) to produce
new RUL, SoH, and PH estimates for each sensor data point.
The software is run using an intuitive graphical user interface
(GUI) or a command-line interface (CLI) that allows a user to
upload and process condition-based data (CBD) streams for a
target system or subsystem whose health is to be monitored.
The software platform relies on user-specified system definition
and node files, and key parameters to process the condition-
based data. Once the data inputs and parameters are entered
into the program, it outputs key prognostic estimates and data
plots for RUL, SoH, and PH.

Here, we present operational principles of reaction wheels
to derive the motor torque equation that relates to the rise
in temperature due to static friction. Subsequently, we briefly
introduce ARULE that takes Fault-to-Failure Progression (FFP)
or Condition Indicator (CI) Feature Data (FD) as input and
estimates the aforementioned key prognostic estimates. Finally,
a low Earth orbit (LEO) scenario is considered for generating
synthetic data using Basilisk, an open-source astrodynamics
simulation framework. The faults are injected and the synthetic
data consisting of two fault occurrence cases, one-time and
repeated, are fed into ARULE for further analysis.

II. PROBLEM STATEMENT AND FOUNDATION

Faults are dangerous for space missions and depending on
the severity, time, and frequency of occurrence, these faults
may lead to a total mission failure. Reaction wheels are robust

Fig. 1. Coordinate frame, gimbal frame, G : {ĝs, ĝt, ĝg} for a VSCMG [12].
The wheel speed is denoted by Ω and gimbal rate by γ̇.

momentum exchange devices that transfer momentum of the
spacecraft by exerting a torque on the rigid body. However, they
may experience faults during their lifetime due to extended op-
eration times beyond set mission timelines, excessive radiation,
or mechanical failures. These faults can be classified either as
mechanical or electrical. Any failure in the bearing increases
friction, leading to increasing temperature, and damage to
wheels and nearby components. Imbalanced reaction wheels
increase vibrations and affect the spacecraft’s stability and
positional accuracy. Electrical faults often manifest as over-
current conditions in reaction wheel’s motor. Issues in the
power supply, control electronics, or the motor itself can lead
to such faults. Extended over-current draw results in increased
heat generation catalyzing mechanical wear and reducing effi-
ciency. Circuit failures can lead to incorrect speed commands or
feedback, disrupting control algorithms, and leading to erratic
wheel behavior. In any fault condition, temperature is bound to
rise. As such, increasing temperature is a common symptom
of wear, and ought to be monitored.

A. Principle of Reaction Wheel Operation

Consider three coordinate frames: reaction wheel frame,
body frame, and inertial frame. The reaction wheel frame is
defined as W : {ŵs, ŵt, ŵg} where ŵs points in the direction
about which the reaction wheel spins, ŵt is along the radial
direction, and ŵg completes the orthogonal vector set. The
body frame is defined as B : {b̂1, b̂2, b̂3} where each axis
of the frame aligns with the principal body axes. The final
frame, inertial frame, is defined as N : {n̂1, n̂2, n̂3}. Note
that the reaction wheel operation is a special case of VSCMG
in absence of gimbaling. If γ denotes the angle by which the
VSCMG has turned about the hinged axis, then the gimbaling
rate is denoted by γ̇. For no gimbaling rate, γ̇ = 0, a VSCMG
operates as a reaction wheel. Figure 1 shows a VSCMG with
the gimbal frame G : {ĝs, ĝt, ĝg}. The gimbal and reaction
wheel frame share the spin axis, ŵs = ĝs. Therefore, an



alternative form of reaction wheel frame is W : {ĝs, ŵt, ŵg}.
Denoting the inertia of the reaction wheel disk as [IW ] (in-

ertia matrix) and that of the spacecraft’s rigid body as [Is], the
total inertia of the spacecraft is then given by [I] = [Is]+[IW ].
The angular momentum of the reaction wheel and spacecraft
is given by:

HW = [IW ]ωW/B (1)

HB = [Is]ωB/N (2)

where ωW/B is the reaction wheel speed with respect to the
spacecraft body frame and ωB/N is the rotational rate of the
spacecraft with respect to the inertial frame. Defining ωW/N =
ωW/B +ωB/N , the total angular momentum of the spacecraft
is [12]:

H = HB +HW

= [Is]ωB/N + [IW ]ωW/N
(3)

Under the assumptions of – (a) time-invariant spacecraft inertia,
[İ] = 0, and (b) absence of any external force acting on
the system Fext = τext = 0, the torque on the spacecraft
is generated only when ωW/N ̸= 0. The change in reaction
wheel speed changes its angular momentum, ḢW ̸= 0. Since
the total angular momentum is conserved, Ḣ = 0, the angular
momentum of the spacecraft must change. If the spin rate of
the wheel is Ω and ĝs is the spin axis, then ωW/B = Ωĝs. The
equation of motion for the reaction wheel is computed using
Euler’s equation ḢW = LW . Using transport theorem to find
ḢW :

ḢW = [IW ]ω̇W/N + ωW/N × ωW/N

= [IW ](ω̇W/B + ω̇B/N )
(4)

As the reaction wheel spins about one axis only, it is convenient
to assign reaction wheel frame to the inertia tensor. The disk
inertia is then expressed as:

W [IW ] =

IWs
0 0

0 IWt
0

0 0 IWt

 (5)

The inertia about second and third axis is same due to
symmetry for a balanced wheel. Expressing the transforma-
tion/rotation matrix between the body and wheel frame as
[BW ] = [ĝs ŵt ŵg]:

B[IW ] = [BW ]W [IW ][BW ]T

= IWs
ĝsĝ

T
s + IWt

ŵtŵ
T
t + IWt

ŵgŵ
T
g

(6)

Decomposing the inertial rotational body rate in the wheel
frame and equating ωB/N = ω:

Wω = ωsĝs + ωtŵt + ωgŵg (7)

Substituting inertia and angular rate expressions in Euler equa-
tion for reaction wheel:

ḢW = (IWs
ĝsĝ

T
s + IWt

ŵtŵ
T
t + IWt

ŵgŵ
T
g )(Ω̇ĝs + ω̇)

= IWs ĝsĝ
T
s (Ω̇ĝs + ω̇) + IWt(ŵtŵ

T
t + ŵgŵ

T
g )ω̇

= IWs
(Ω̇ + ĝT

s ω̇)ĝs + (IWt
ŵT

t ω̇)ŵt + (IWt
ŵT

g ω̇)ŵg

(8)

The torque about the spin axis is the reaction wheel (RW) motor
torque required to spin the wheel. Using short-hand notation,
we can express above equation as:

ḢW = LW = usĝs + utŵt + ugŵg (9)

us = IWs
(Ω̇ + ĝT

s ω̇) (10)

Given the current disk angular acceleration and spacecraft
angular acceleration, us is the RW motor torque. Note that
this expression does not include any effects of gimbaling and
thus reflects pure reaction wheel operation.

B. Power and Temperature Consideration

Let the total electrical power drawn by a reaction wheel be
Pelec. This electrical power is converted to mechanical power
and during this process, losses occur due to friction and the
electrical resistance of the copper winding. Denoting copper
winding losses as PCu, frictional losses as Pf, and mechanical
power as Pmech:

Pelec = Pmech + Pf + PCu (11)

An equation for electrical power draw for a DC, steady state
motor is given in literature [13][14]. The actual mechanical
power used to drive the wheel is based on motor efficiency.
Considering the electrical power as the input (Pinput) and
mechanical power as output (Poutput), the motor efficiency can
be defined as, η:

η =
Poutput

Pinput
× 100 (12)

Using motor efficiency, we can write:

Pmech = ηPelec (13)

Pf + PCu = Pmech
1− η

η
(14)

The mechanical power of the reaction wheel depends on the
motor torque and the speed at which the wheel is operating [5]:

Pmech = Ω · us = ΩIWs
(Ω̇ + ĝT

s ω̇) (15)

Additionally, the frictional dissipation of power, which is a
result of the mechanical faults, can be expressed as [5]:



Pf = Ω · τf (16)

In this study, we only consider the thermal effects of fault,
primarily caused by either bearing failure or over-current draw.
The energy dissipation due to friction and copper winding
loss causes temperature rise. This is the total thermal power,
Ptherm = PCu + Pf. A simple Euler integration converts this
thermal power to heat [5]:

Q = Ptherm∆t (17)

The temperature is directly proportional to the heat in the
system. With calibration, the temperature can be associated
with the heat generated as:

Tk+1 = Tk +Q∆t (18)

where we have assumed no energy dissipation. This particular
assumption is relevant for small re-entry vehicles that are
unmanned and do not have an active thermal management
system.

C. Kalman Filter and Extended Kalman Filter

A common method for estimation is to use some form
of Kalman filter. Optimal finite-dimensional algorithms for
recursive Bayesian estimation can be formulated in a linear-
Gaussian case where the functional recursion of following
equation becomes the Kalman filter [15]:

p(xk|Zk−1) =

∫
p(xk|xk−1) p(xk−1|Zk−1) dxk−1 (19)

p(xk|Zk) =
p(zk|xk) p(xk|Zk−1)

p(zk|Zk−1)
(20)

where p(xk|Zk−1) is the prediction density, p(xk|xk−1) is
transitional density, p(xk|Zk) is posterior probability density
function, p(zk|xk) is likelihood function, zk are measurements,
Zk is the sequence of all available measurements. The Kalman
filter assumes that posterior density at every time step is
Gaussian, hence exactly and completely characterized by its
mean and covariance [15]. However, the Kalman filter only
applies to linear systems, while many systems encountered in
reality exhibit nonlinear behavior. Nonlinear systems are han-
dled using an extended Kalman filter (EKF), which linearizes
the system’s behavior about a Kalman filter estimate based
on a linearized system [16]. Originally proposed by Stanley
Schmidt, the extended Kalman filter (EKF) was developed
so the Kalman filter could be applied to nonlinear spacecraft
navigation problems [16].

D. ARULE Framework

ARULE is a part of Ridgetop’s three-stage PHM system
architecture shown in Figure 2, which can be used to con-
ceptualize different types of FD extracted from different CBD,
stored in files, and subsequently used for post–processing to
determine the health, service, and maintenance needs for a
given system. It is comprised of the following three stages
which are compliant with operational processes and functional
blocks of IEEE 1856-2017 [11]:

1) Sensing Stage - Monitor a system node or a collection of
nodes that sense and collect CBD indicative of damage or
degradation. Corresponds to S and DA in Figure 3.

2) Feature Extraction Stage - Application-specific data pro-
cessing routines that condition and transform CBD into
Feature Data (FD) in a form or signature that is corre-
lated to increasing levels of damage leading to functional
failure. Corresponds to DA and DM in Figure 3.

3) Prognosing Stage - Process input Functional Failure Sig-
nature (FFS) data to prognose a future time of functional
failure and outputs prognostic information such as RUL,
PH, and SoH. Corresponds to SD, HA, and PA in Figure
3.

Aside from these three stages, the two right-most blocks
following the final stage in Figure 2 correspond to AG and
HA in Figure 3.

Fig. 2. Diagram of a 3-stage PHM system: (1) sensing stage, (2) feature
extraction stage, and (3) prognosing stage to produce prognostic information
with ARULE.

The sensing stage is one or more system nodes being
monitored for health and is comprised of one or more sensors
that monitor nodes by collecting condition-based data (CBD).
These sensors can be electrical, mechanical, frequency-based,
and so on. As an example from this study, a monitored system
node is the reaction wheel location that experiences minimal
shock and vibration. CBD examples could include vibration,
shock, temperature (heat), light, and electrical (voltage and
current). Noisy data, sampling rates, sampling periods, and so
on can impact this sensing stage. Therefore, it is important
that the output of this stage usually be filtered or windowed.



Fig. 3. IEEE 1856-2017 PHM Standard Framework.

Subsequently, the Feature Extraction Stage accepts one or more
CBD inputs from sensors attached to system nodes. This stage
performs application-specific data processing to extract various
types of features (FD) that correlate with system degradation
caused by one or more failure modes. Extraction of features
from CBD to form signatures is accomplished using any
application-specific data-processing algorithms and techniques
including classical model-based and data-driven approaches
such as reliability analysis, distribution analysis, physics-of-
failure modeling, statistical analysis, and machine learning.
Examples include:

1) k-nearest-neighbor (KNN) comparisons to identify and
select features of interest,

2) distance calculations such as Euclidean or Mahalanobis to
determine magnitude of changes in measurements related
to damage/degradation,

3) and physics-of-failure models to determine changes
in parameter values correlated with increasing dam-
age/degradation.

The objective of this stage is to extract features (FD) that form a
signature comprising changes in value correlated with increas-
ing levels of damage/degradation. In the absence of degrada-
tion, FD data forms an essentially flat signature, whereas in the
presence of degradation, FD data forms a curvilinear signature.

At the core of this three-stage architecture is the ARULE
Adaptive Prediction Kernel (APK), which is comprised of
two subsystems: Data Processing and Prognosing. The Data
Processing subsystem transforms FD signatures into other
signatures upon request from a feature extraction stage. The
signature transformation occurs sequentially, one data point
at a time, rather than through batch-mode processing of an
entire dataset, allowing for near real-time prognostic results.
To accommodate robust extraction and/or data processing, the
feature extraction stage can specify the step at which signature
processing begins and the parameter values to be used in
signature processing. The steps taken by this subsystem are
as follows:

1) Transform FD signature data into Fault-to-Failure Progres-

sion (FFP) signature data.
2) Transform FFP signature data into Degradation Progres-

sion Signature (DPS) data.
3) Transform DPS data into Functional Failure Signature

(FFS) data.
Secondary functions of this subsystem include performing
noise mitigation, such as data smoothing and noise margin
adjustments, upon request.

Next, the Prognostics subsystem accepts and processes FFS
data to produce prognostic information: Remaining Useful Life
(RUL), State of Health (SOH), and Prognostic Horizon (PH).
The Prognostics subsystem comprises algorithms designed to
rapidly and accurately converge to the prediction of the true
time of functional failure, identifying the point in time where
a prognostic target is no longer capable of operating within
specifications.

III. ANALYSIS OF LOW EARTH ORBIT SCENARIO

Consider a spacecraft or satellite in Low Earth Orbit (LEO).
The actuators for attitude control are four reaction wheels in
pyramid configuration. The initial conditions for the spacecraft
are listed in Table I. The attitude is described using Modified
Rodrigues Parameters (MRPs). The Modified Rodrigues Pa-
rameters (MRPs) are attitude parameters represented by vector
σ = [σ1 σ2 σ3]

T . In this scenario, the spacecraft is
assigned to operate in hill pointing mode for 500 mins. The
reaction wheels used are Honeywell HR16 model with 50
Nms maximum angular momentum storage. The simulation
is performed using Basilisk, an open-source astrodynamics
simulation framework [17]. Basilisk has an in-built thermal
and encoder module [5]. Under nominal operation, the reaction
wheels must have zero static friction, drive attitude error to
zero within numerical precision, and not have erratic speed
transition. Under no faults and with assumption of accurate
reaction wheel sizing, the reaction wheel cluster must be able
to control the attitude of the spacecraft.

A. Fault Simulation

A friction fault would increase the nominal static friction of
the reaction wheel by a factor between five and twenty [5]. This
friction increase must be overcome by the motor to achieve the
commanded reaction wheel speed. Two scenarios are baselined
in this paper for assessment. In the first scenario, we artificially
inject only one fault during the whole duration on one reaction
wheel. In the second scenario, we inject multiple faults to the
same reaction wheel. Fault injection time is randomized using
uniform distribution. The simulation is setup in Basilisk where
the static friction fault is injected. For illustrative purpose, the
static friction increase for one time fault is increased by a factor
of five, whereas for repeated faults, the increase is more gradual
and randomized to show the cumulative effect on the wheel’s



TABLE I
INITIAL CONDITIONS FOR BASILISK SIMULATION

Parameter Value Unit

a 10000.0 km

e 0.1 -

i 33.3 deg

Ω 48.2 deg

ω 347.8 deg

f 85.3 deg

σB/N [0.1, 0.2, -0.3] -
BωBN [0.01, -0.01, 0.03] rad/s

operation. In our analysis of the Low-Earth Orbit scenario, we
exclude stochastic variability from the addition of Gaussian
noise to input parameters that may obscure the deterministic
relationships we aim to investigate.

B. One-Time and Repeated Faults

Figure 4 illustrates the reaction wheel speed of a selected
component from the cluster under different operational sce-
narios. Under normal conditions, the speed exhibits a pure
sinusoidal pattern. However, in the presence of faults, such as
one-time and repeated occurrences, the speed drops abruptly
to zero. This decline in speed initiates immediately upon fault
detection, attributed to angular deceleration governed by the
static friction value.

In Figure 5, we compare the static friction for one-time and
repeated faults, observing a cumulative effect with repeated oc-
currences. Once a fault is detected, wheel operation is impeded,
causing the speed to fall. Although this doesn’t instantaneously
halt the reaction wheel, a noticeable transient effect is evident.
Upon complete cessation of wheel movement, it becomes non-
operational, necessitating the remaining three reaction wheels
to compensate for attitude error convergence.

Attitude error, denoted by σB/R, represents the disparity
between the desired orientation of a spacecraft (body frame
B) and its actual orientation (reference frame R). Successful
attitude control requires driving this error to zero:

σB/R = σB − σR → 0 (21)

Under fault-free conditions, the attitude error norm steadily
converges to zero. However, in fault scenarios, we observe
a significant deviation in attitude convergence, as depicted
in Figure 6. Faults restrict the actuators’ ability to converge
attitude error efficiently.

Despite the hindered convergence, additional fault occur-
rences on the same wheel do not affect the operation of the
remaining active wheels significantly. Consequently, attitude
convergence may take longer, albeit not substantially. The

Fig. 4. Reaction wheel speed variation over time during hill pointing mode.

Fig. 5. Static friction variation over time for one time and repeated fault
compared to nominal value.

initial convergence delay is attributed to a marginal increase
in friction value, which initially does not impede attitude error
convergence. However, once the friction exceeds a certain
threshold, about a factor of two and a half times pristine
friction, the wheel’s speed diminishes rapidly, leading to a
transient increase in attitude error.

This synthetic simulation data serves as a foundation for
post-processing. It represents Condition-based Data (CBD)
from which features are extracted and input into ARULE
for analysis. ARULE then renders predictions on Remaining
Useful Life (RUL), Prognostic Horizon (PH), and State of
Health (SoH), aiding in proactive maintenance strategies.

C. ARULE Inputs & Outputs

To comprehensively characterize the Fault-to-Failure Pro-
gression (FFP), we employed the Rolling Root-Mean-Square
(RRMS) technique, as depicted in Equation 22, where k is
the time window size in minutes, and x2

1, x
2
2, x

2
3, ..., x

2
n denote

the squared signal values. For this analysis, we utilized a time
window of 10 minutes.



Fig. 6. Variation of attitude error over time. For nominal operation, the attitude
error is driven to zero with higher numerical precision.

Fig. 7. Rolling Root-Mean-Square (RMS) Feature Data (FD) calculated for
one time and repeated fault scenarios.

This approach facilitated the extraction of Feature Data (FD)
for both instances of failure occurrences, as shown in Figure
7. While the FD curve for the one-time fault scenario may
not have precisely aligned with the ideal FFP curve, the curve
for repeated faults exhibits a continuous curvilinear signature.
This observation underscores a direct correlation between the
frequency of faults and the escalation of FD values.

RRMSi =

√
1

k

(
x2
i + x2

i−1 + . . .+ x2
i−k+1

)
(22)

Subsequently, the analysis extends to the integration of this
RRMS FD into a Node Definition File (NDEF) inside a System
Definition File (SDEF). Within ARULE, SDEF is a high-level
overview of the entire system, whereas NDEF is a structured
data format used to define the nodes within the system and
their parameters, facilitating the organization and processing
of FD for prognostic estimation. In the prognostic degradation
model, the baseline FD value, indicative of a system devoid
of any degradation, was established at 0.001. In the one-time
and repeated-fault cases, the FF threshold was determined to

Fig. 8. State of Health (SoH) of reaction wheels for one time and repeated
fault scenarios.

Fig. 9. Remaining Useful Life (RUL) and Prognostic Horizon (PH) of reaction
wheels for one time and repeated fault scenarios.

be a 1100% increase in FD, setting a critical value of 0.11.
FF represents the point at which the system can no longer
operate nominally. The Time-To-Functional Failure (TTFF)
was initially estimated at 1000 minutes, providing a forecast
for the duration until the system reaches its FF threshold
under current conditions. Given the synthetic nature of the
dataset, devoid of the noise typically present in real-world
data, the noise margin was set to zero. This decision reflects
the controlled conditions under which the FD were generated
and analyzed, thereby ensuring the precision of prognostic
estimations. Shown in Figure 8 and Figure 9 are the SoH and
the RUL/PH for both cases, respectively. Results shown suggest
that the system undergoes complete failure at 9.808 minutes for
the one-time fault scenario and 42.78 minutes for the repeated
faults scenario. These cases can be treated as two FMs for
spacecraft reaction wheels.



IV. CONCLUSION

This paper emphasizes the significance of prognostic evalu-
ations of FFP signatures in spacecraft reaction wheel systems.
Simulated synthetic reaction wheel static friction data from a
spacecraft in LEO was used as CBD, and a RRMS analysis
over a 10 minute window was carried out to extract FD.
The continuous increase in FD with repeated faults demon-
strates a direct correlation with fault frequency, highlighting
the importance of monitoring and managing these parameters
to mitigate failure risks. These FD were input into ARULE to
enable further processing for prognostic estimates, revealing
the intricate relationship between static friction, operational
degradation, and system failure thresholds using RUL, PH, and
SoH. In both cases of fault occurrences - one-time and repeated,
a complete reaction wheel failure is predicted within the first
50 minutes of the spacecraft’s flight time.

A single instance of increased static friction can significantly
impact the reaction wheel’s performance, emphasizing the
necessity of real-time monitoring and predictive maintenance
for extending operational life. The use of ARULE to process
FD from fault simulations provides valuable insights into the
prognostic health management of spacecraft reaction wheels.
This approach enhances understanding of FFP signatures and
offers a robust methodology for predicting system degradation
and optimizing maintenance schedules. Using this methodol-
ogy, multiple reaction wheels can be monitored in real time,
and useful FD and CIs obtained in their raw data streams can be
passed to ARULE for determination of RUL, PH, and SoH, as
the spacecraft carries its mission on-orbit. Integrating advanced
data analysis techniques with predictive health management
tools is crucial for ensuring the reliability and longevity of crit-
ical spacecraft components. These methodologies and insights
will be instrumental in safeguarding mission success amid
inevitable component faults during ongoing space exploration.
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