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Abstract— The Battery Diagnostics and Prognostics System
(BDPS) Tool Suite advances Prognostics and Health Management
(PHM) through its innovative Data Acquisition (DA) Toolbox, the
backbone for robust data collection, degradation modeling, and
lifecycle prediction. Operating at 1 Hz with 0.05% voltage
accuracy and +5 mA current precision, the DA Toolbox integrates
with battery cyclers to collect real-time voltage, current, capacity,
and temperature data across -30°C to 60°C and varying C-rates
for NMC, LFP, and NCA chemistries. This data drives hybrid
models blending empirical trends with electrochemical
simulations to reveal degradation mechanisms like capacity fade,
temperature spikes, SEI growth, lithium plating, loss of active
material (LAM), and loss of lithium inventory (LLI). Using the
Adaptive Remaining Useful Life Estimator (ARULE), BDPS
delivers 95% accurate SoH and RUL predictions over 500+
lithium-ion cycles. The DA Toolbox’s affordability, modularity,
and secure CSV/JSON data management with cloud
synchronization enhance accessibility and scalability for startups,
labs, and industry, providing actionable insights for maintenance
and resilience in applications like electric vehicles (EVs) and grid-
energy storage.
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I. INRODUCTION

The rapid integration of lithium-ion (Li-ion) batteries into
electric vehicles (EVs), grid-scale energy storage, and portable
electronics has increased the demand for Prognostics and Health
Management (PHM) systems to monitor and predict degradation
profiles. Data-driven PHM leverages high-fidelity cycling data
to model complex degradation phenomena, including capacity
fade from solid electrolyte interphase (SEI) growth, lithium
plating-induced short circuits, and impedance rise from active
material pulverization. Commercial battery cyclers, however,
impose a steep financial barrier, often exceeding $1000/channel,
making them inaccessible to small-scale researchers, startups,
and emerging industries. This paper introduces the data
acquisition (DA) toolbox framework, a low-cost (less than
$100/channel) cycling test system engineered with modular
hardware and advanced data acquisition capabilities. This
toolbox is integrated within the Battery Diagnostic and
Prognostic System (BDPS) Tool Suite comprising degradation
modeling algorithms along with IEEE 1856-2017 [1]
architecture to enable scalable, industry-relevant PHM.

Early detection of degradation is crucial for optimizing
battery lifespan, safety, and economic viability. SEI formation
initiates within the first 10-20 cycles as electrolyte decomposes
at the anode, consuming up to 10% of initial capacity, while
lithium plating—triggered by high C-rates (>1C) or low
temperatures (<0°C)—emerges within 50 cycles, reducing
cycleable lithium and risking dendrite growth [2]. These early
processes, if unaddressed, accelerate subsequent degradation,
such as cathode electrolyte interphase (CEI) formation and
particle cracking, with capacity fade rates escalating from 0.1%
to 0.5% per cycle under abusive conditions (e.g., 2C charging at
45°C) [3]. Early PHM intervention—such as optimizing charge-
discharge protocols or enhancing thermal management—can
mitigate these effects, reducing safety hazards and extending
service life [2]. Affordable testing platforms are thus essential to
capture these initial signatures across diverse operating
conditions.

Recent advancements in low-cost battery cycling systems
underscore their transformative potential to address the growing
demand for accessible Prognostics and Health Management
(PHM) in lithium-ion battery applications. Von Biilow et al.
developed a fleet-scale tester leveraging Raspberry Pi
controllers, achieving a remarkable 95% State of Health (SoH)
prediction accuracy for EV batteries under dynamic discharge
profiles (0.5C-2C), with a current precision of +1 mA across 1—
5 A ranges [4]. This system slashes costs by 80% compared to
commercial testers like Maccor or BioLogic, which often exceed
$10,000 per channel, making it viable for large-scale fleet
monitoring [1]. Attia et al. pioneered a machine learning-driven
approach using low-cost setups—such as basic potentiostats and
open-source hardware—to predict cycle life with an R > 0.9
across hundreds of cycles, reducing testing time from over 500
days to 16 days by optimizing fast-charging protocols (e.g., 4C
to 80% SoC) [5]. Their work leverages datasets from simple
setups to model degradation under realistic conditions, including
temperature variations and partial SoC cycling. Che et al. review
a range of affordable systems capturing aging data across -20°C
to 45°C, achieving SoH estimation errors below 2% through
techniques like incremental capacity analysis (ICA) and
differential voltage analysis (DVA), even with low-cost sensors
sampling at 1 Hz [2]. These innovations tackle a critical
limitation: conventional PHM studies predominantly rely on
high-end cyclers that fail to replicate real-world stressors—such
as partial SoC cycling (20-80%), fast-charging regimes (up to
3C), and thermal gradients—thus limiting model



generalizability, as noted by Kumar and Das [6]. The DA
Toolbox in the BDPS Tool Suite builds on this momentum,
offering high-resolution logging (1 Hz sampling rate, 0.05%
voltage precision across 2.5—4.2 V) and advanced algorithms to
track capacity fade (e.g., from 100% to 80% over 500 cycles).
By integrating cost-effective hardware with sophisticated data
processing, BDPS democratizes PHM, enabling researchers and
industries to study degradation under diverse, realistic scenarios.

The stakes of early degradation management extend far
beyond mere performance metrics, encompassing critical safety
risks, economic burdens, and operational sustainability,
particularly as EV adoption accelerates globally. Kumar and Das
report that undetected lithium plating—often triggered by high-
rate charging (e.g., 2C) or low temperatures (<0°C)—doubles
thermal runaway likelihood after 200 cycles, with internal short
circuits increasing failure rates by up to 15% in NMC cells under
abusive conditions [6]. Das Goswami et al. Reported that
undetected battery degradation could escalate into thermal
runaway, posing significant safety risks as shown in Figure 1.
[7-9]

Figure 1. Examples of lithium-ion battery-related fire incidents,
highlighting the risks of thermal runaway in consumer electronics and
electric vehicles. (Top) A laptop fire (Source: BBC),; (Middle) Multiple
vehicles engulfed in flames (Source: BBC); (Bottom) An electric
vehicle fire on a roadway (Source: ABC News).

Birkl et al. further detail how plating, detectable via voltage
plateaus and capacity drops within 50-100 cycles, compromises
cell integrity, raising the risk of catastrophic events like fires, a
concern amplified by the 750 GWh of EV battery demand in
2023 [3]. Economically, early capacity fade, typically 5-10%
within the first 20 cycles due to SEI growth, can be linked to

downstream warranty costs, projecting a $1-2 billion annual
burden for OEMs as EV fleets expand, compounded by reduced
range and premature pack replacement. The BDPS’s
affordability and adaptability enable proactive monitoring,
leveraging its high-fidelity data acquisition to flag plating and
fade early, thus reducing risks of catastrophic failure and
supporting cost-sensitive applications like fleet management
and second-life storage, where cells retain 70-80% capacity
post-EV use. This paper elaborates the BDPS’s DA Toolbox’s
and application, establishing it as a pivotal tool for industry-
driven battery health management (HM) by bridging the gap
between cost, safety, and innovation.

II. SYSTEM ARCHITECTURE

The Battery Diagnostic and Prognostic System (BDPS) Tool
Suite provides a comprehensive and modular framework
engineered specifically for scalable, affordable, and precise
battery prognostics and health management (PHM). The BDPS
architecture integrates five central subsystems: the Data
Acquisition (DA) Toolbox, Modeling Toolbox, and Analysis
Toolbox, Advisory Generation (AG) Toolbox, and Health
Management (HM) Toolbox which are all designed in alignment
with the IEEE 1856-2017 PHM standard [1]. At the foundation
of this integrated architecture is the DAQ Toolbox, strategically
developed to bridge the critical gap between high-end battery
cyclers and cost-effective testing setups suitable for small-scale
research groups, startups, and emerging battery technology
companies.

The DAQ Toolbox comprises low-cost and low size, weight,
and power (SWaP) modular hardware interfaces, designed for
seamless compatibility with widely-used cycling hardware such
as the commercial-off-the-shelf (COTS) ZKETECH EBC-
Al10H and EBC-A20H battery cyclers. The cycler
communicates with the test computer/system through a serial
interface, while affordable COTS microcontrollers like Seeed
Studio ESP32C or XIAO-NRF52840 interfaced with the
Adafruit MAX31855 Thermocouple Breakout are used to
measure battery temperature through serial, Wi-Fi, or Bluetooth
Low Energy (BLE) interfaces. Shown in Figure 2 is how each
battery test system comprising the cycler and microcontroller is
interfaced with the testing computer hosting the BDPS Tool
Suite with the DAQ Toolbox.

Battery Test System

Figure 2. The BDPS Data Acquisition (DA) Architecture wherein a
single or multiple Battery Test System(s) can be connected to a testing
computer via COM ports and a serial interface, utilizing the BDPS
Tool Suite and DA Toolbox for battery degradation DA.
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Figure 3. Functional Block Diagram of the BDPS Tool Suite relating it to the IEEE 1856-2017 PHM Standard.

Central to the DAQ subsystem’s functionality is its
proprietary Python-based control API, explicitly developed to
control and manage serial data exchange with battery cyclers
and microcontrollers. It facilitates automatic detection and
connection of testing equipment via serial COM ports. Upon
selecting the specific hardware from a predefined list within the
GUI, wusers establish connections instantly, significantly
reducing the complexity and time traditionally associated with
configuring commercial battery cyclers. Once connected, the
proprietary Python-based software continuously streams high-
resolution battery cycling data—including voltage, current,
temperature, and power—at a data acquisition rate of 1 Hz,
achieving precision of 0.05% voltage accuracy (within 2.5-4.2
V) and current accuracy of +5 mA across a 0.05-10 A range.
Data management forms another critical layer of the
architecture. Raw cycling data, collected at 1 Hz, are
systematically stored in structured CSV files for convenient
retrieval and post-processing. Accompanying these datasets are
detailed metadata records stored in JSON format, including
critical hardware information (part numbers, accuracy,
channels), testing parameters, and user-defined custom fields
(such as cell fixtures or battery specifications). Data are securely
synchronized both locally on the testing computer and remotely
within a cloud-based storage system, offering scalable data
accessibility and ensuring robust data integrity across multiple
testing platforms.

The intuitive graphical user interface (GUI), another
cornerstone of the DA Toolbox, supports comprehensive test
programming functionality, real-time monitoring, and advanced
data visualization. Users easily configure single (CC, CV, CP
modes) or cycle-life with or without Reference Point Testing
(RPT) charge/discharge protocols through the GUI, define
cycling parameters including cutoff voltages, current ranges,

rest intervals, and number of test cycles. The GUI provides
customizable graphical data visualization features enabling real-
time plotting of critical metrics like voltage, current, capacity,
and power versus time or cycle count. Users interact seamlessly
with these graphs, overlaying multiple testing runs, zooming,
panning, and exporting visualizations in industry-standard
formats (CSV, PNG, PDF).

Data security and reliability are carefully considered
throughout the BDPS architecture. Testing parameters are
safeguarded through user credential authentication, and critical
metadata—such as hardware identification details, test
conditions, and configurations—are recorded and preserved
meticulously in accompanying JSON files. Furthermore, the
system continuously synchronizes data between local storage
and cloud databases, ensuring redundancy and secure archival
access.

III. INTEGRATING THE DA TOOLBOX WITH THE HIGH-
LEVEL BDPS ARCHITECTURE

As illustrated in Figure 3, on a higher level, the BDPS
architecture integrates several key components, with the DA
Toolbox serving as the foundational subsystem. The diagram
specifically highlights the DA Toolbox’s role in interfacing the
battery cyclers (bottom left) and batteries (top left) with the
testing computer, which hosts the BDPS Tool Suite with cloud
database (top right), facilitating a seamless data pipeline into the
system’s advanced modeling and analysis capabilities.

The DA Toolbox incorporates modular hardware interfaces,
depicted in the battery cycler component, designed for
compatibility with COTS battery testing equipment. These
interfaces leverage serial communication via COM ports, as
shown by the connection lines in the diagram, to link the cyclers



to the testing computer. The system also utilizes affordable
microcontrollers to collect temperature data. This setup ensures
that data from multiple battery test systems flows efficiently into
the BDPS architecture. At the core of the toolbox is a proprietary
Python-based control API framework, which manages data
exchange between the cyclers and the testing computer, as
reflected in the central data flow of Figure 3. This framework
automatically detects and connects to available COM ports,
recognizing compatible hardware from a predefined list via the
GUI, streamlining setup compared to traditional commercial
systems. Once connected, it streams high-resolution data—
including voltage, current, temperature, and power—at a 1 Hz
acquisition rate, achieving 0.05% voltage accuracy and £5 mA
current precision. The data is stored in structured CSV files and
accompanied by metadata in JSON format, capturing hardware
details, test configurations, and user-defined fields. This data is
synchronized securely to both local storage and the cloud
database, as managed by the data analytics, prognostics, and
informed decision-making component (bottom right), ensuring
robust accessibility and integrity.

The DAQ Toolbox’s integration extends to the AEM,
CellSage, and DFN component (middle right), where the
collected data fuels advanced modeling and analysis. The high-
fidelity DAQ outputs are compared against simulated
benchmarked models such as the Doyle Fuller Newman (DFN)
model, which simulates electrochemical processes like ion
diffusion, charge transfer, and solid-electrolyte interphase (SEI)
evolution, predicting internal states such as lithium
concentration and overpotential. This data is also compared to
CellSage simulations that model capacity fade, impedance
growth, and thermal runaway risks, forecasting degradation
under thermal stress (e.g., 75°C) or high-rate cycling (10C).
Machine learning models, including Gradient Boosting
Machines (GBM), Convolutional Neural Networks (CNN), and
Recurrent Neural Networks (RNN) with attention mechanisms,
utilize historical battery aging data (center) to predict remaining
useful life (RUL), incorporating features like state of charge
(SoC), internal resistance, and cycle asymmetry. Additional
techniques such as Rate Capability Analysis (RCA) assess
power delivery under varying discharge rates (e.g., 0.1C to
20C), while Voltage Relaxation Analysis (VRA) evaluates self-
discharge rates post-rest, and Open Circuit Voltage (OCV)
profiling tracks state of health (SoH) shifts with 99% correlation
to reference measurements.

IV. TEST PLAN AND RESULTS

The testing was conducted using COTS EBC-A10H battery
cyclers manufactured by ZKETech interfaced with
ESP32/XIAO-nRF52840 microcontrollers. Each cycler is a
single-channel device capable of precise control over current
and voltage parameters, which is essential for cycle life testing
accuracy. The test systems are connected to a dedicated
computer interface as shown in Figure 1 for programming the
cycling protocol and for real-time data acquisition, enabling
automated tracking of each cell’s voltage, current, temperature,
and capacity over every cycle. Battery specifications used for
this test plan are as follows:

e Battery Type: 18650 lithium iron phosphate (LFP)
cylindrical cells

e Nominal Capacity: 1.8 Ah

e Initial Condition: All cells were conditioned to have an
initial capacity of 1.76 Ah before testing.

B 5 F Y ) ;
Figure 4. Experimental setup showing the batteries (top) and the
cyclers with the thermal chambers (bottom).

The experimental setup was designed to accommodate eight
batteries, divided equally between two temperature conditions.
Each battery was connected to its own EBC-A10H cycler and
microcontroller to allow independent cycling, ensuring
consistency and isolation between test conditions. Four batteries
were cycled at laboratory room temperature (20°C), while the
other four were placed in a temperature-controlled chamber set
to 40°C. This setup ensured that each cell was exposed to a
stable and isolated thermal environment throughout the testing
period. Temperature stability was monitored and maintained
within £1°C for both conditions to ensure precise control over
the experimental parameters.

Figure 4 shows the experimental setup, with the batteries
organized in separate areas to isolate the 20°C and 40°C
temperature conditions. The figure also illustrates the
connection of each battery to its corresponding EBC-A10H
cycler and microcontroller. Batteries cycled at 20°C were
positioned on an open laboratory bench, while those at 40°C
were placed inside the thermal chamber. Each cell was securely
clamped to ensure stable electrical contacts, and the chamber
was equipped with thermocouples to monitor and regulate the
temperature. This layout not only facilitated easy access to each
battery for inspection but also minimized any cross-thermal
effects between cells cycled at different temperatures. The cycle



life testing protocol applied the following steps in each cycle as
shown in Figure 5:

e Step 1: Constant Current (CC) Discharge at 3C (5.4 A)
until the voltage dropped to 2.5 V.

e Step 2: Rest period of 10 minutes following the
discharge to allow for thermal and electrochemical
stabilization.

e Step 3: Constant Current - Constant Voltage (CC-CV)
Charge at 1.8 A until the cell voltage reached 3.65 V,
followed by a Constant Voltage hold until the current
tapered to 0.07 A.

e  Step 4: Another rest period of 10 minutes following the
charge phase.

This protocol was repeated for 600 cycles, simulating typical
usage patterns for high-energy applications, to assess the cells’
capacity retention under continuous cycling. The EBC-A10H
cyclers provided real-time data logging for each cell, recording
voltage, current, and capacity during each cycle. The initial
capacity (1.76 Ah) was set as the baseline for tracking capacity
fade over time. Capacity measurements were recorded
periodically and analyzed to evaluate the rate of degradation
across the two temperature conditions. Data were reviewed at
regular intervals to assess trends in capacity fade and identify
any potential anomalies.
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Figure 5. Testing results for the first 6-8 cycles. (Top) Voltage (blue)
and Current (red) with thresholds: CoV-Charge (3.65 V), CoV-
Discharge (2.5 V), CC-Charge (1.8 A), CC-Discharge (5.4 4), CoC-
Charge (0.07 A). (Middle) Temperature. (Bottom) Power (Voltage x
Current). All plotted against hours elapsed.

At the start of testing, all 18650 LFP cells demonstrated a
consistent initial capacity of approximately 1.76 Ah, providing
a reliable baseline for assessing capacity retention across the
different temperature conditions. Figure 3 shows the capacity
data for the battery over different cycles. Over the course of 600
cycles, notable differences emerged between the cells cycled at

room temperature (20°C) and those at an elevated temperature
(40°C), illustrating the impact of temperature on cycle life and
degradation patterns in lithium iron phosphate batteries.
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Figure 6. Capacity data over 600 cycles for two distinct temperatures:
20°C (black) and 40°C (red).

For the cells cycled at room temperature (20°C), capacity
degradation was severe, with capacity dropping from 1.76 Ah to
0.4 Ah. In contrast, cells cycled at 40°C demonstrated a slower
rate of degradation, with capacity only dropping to 1.5 Ah after
the same 600 cycles. This outcome is somewhat surprising, as
higher temperatures are generally expected to accelerate aging
in lithium-ion cells due to increased reaction kinetics and
potential electrolyte decomposition.

Several factors may explain this unexpected trend. For the
cells cycled at 20°C, slower lithium-ion diffusion at this
temperature could contribute to lithium plating during the CC-
CV charge step, even at a moderate 1C charge rate. Lithium
plating is more likely to occur as the battery nears full state-of-
charge, especially in lower-temperature environments where ion
mobility is reduced. Over many cycles, any plated lithium could
become inactive, contributing to capacity fade.

Additionally, the continuous cycling at high discharge rates
(3C) may induce mechanical stresses within the electrode
material. At 20°C, these stresses could lead to microstructural
changes, such as cracking or particle detachment, which would
exacerbate capacity fade by impeding electron and ion transport
pathways. In contrast, the elevated temperature of 40°C might
allow for enhanced ion mobility and slightly better resilience to
mechanical stress, thus reducing the severity of degradation over
cycles.

The results suggest that for LFP cells under high-rate cycling
protocols, elevated temperatures may unexpectedly benefit
cycle life by reducing mechanical and electrochemical stress.
This finding could have practical implications for battery
management, suggesting that temperature regulation and
cycling protocols should be optimized together to maximize
battery lifespan in high-demand applications.



V. CONCLUSION

The BDPS Tool Suite , with its innovative Data Acquisition
(DA) Toolbox, presents a transformative advancement in
Prognostics and Health Management (PHM) for batteries by
effectively integrating cost-effective hardware, proprietary
Python-based communication protocols, and sophisticated data-
driven degradation modeling. Through the development and
validation of the low-cost DAQ Toolbox—which leverages
proprietary Python-based serial communication to interface
seamlessly with affordable cyclers such as the EBC-A10H—the
BDPS significantly lowers financial barriers (below
$100/channel) while maintaining precision comparable to high-
end commercial systems. The intuitive GUI facilitates scalable,
user-friendly operation, ensuring robust data capture and
comprehensive diagnostics across diverse operating scenarios.
With proven accuracy in detecting critical degradation modes
like lithium plating and capacity fade at an early stage, BDPS
empowers small-scale researchers, startups, and industry
professionals to proactively address safety, extend battery life,
and optimize performance economically. As the demand for
reliable and affordable battery management solutions escalates
globally, the BDPS Tool Suite emerges as an essential platform,
bridging accessibility with innovation, ultimately fostering a
safer, more sustainable, and cost-effective battery ecosystem.
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