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Abstract—This paper presents approaches to degradation modeling starting with 
condition-based data (CBD) and progressing to functional-failure signature (FFS) data: 
FFS data forms a transfer curve that is very amenable to processing by prediction 
algorithms in support of a Prognostic Health Monitoring (PHM) system. The approach 
uses degradation signal models that are previously developed, validated, and presented: 
for example, an MFPT 2018 paper “Degradation Signal Modeling.” Degradation signal 
modeling transforms curvilinear, CBD-based signature data into signature data that is 
much more linearized, which increases the accuracy of prediction information such as 
remaining useful life (RUL) and state of health (SoH). The focus of this paper is 
transforming CBD signatures into fault-to-failure progression (FFP) signatures, 
degradation-progression signatures (DPS), and then into FFS [1]-[3]. 

1. INTRODUCTION 

A Prognostic Health Monitoring (PHM) system uses sensors to acquire data and processes that 
data for the purpose of detecting condition indicators (precursors to failure) and using that data 
to prognose the state-of-health of a system by producing prognostic information to include, for 
example, the state-of-health (SoH) and remaining useful life (RUL) of the system. Important 
goals include maximizing the time between when a less than 100% healthy state is first 
detected and the time when functional failure occurs. Functional failure is defined to occur at 
the level of degradation at which a device, component, or assembly is no longer operating 
within specifications. Condition-based data (CBD comprises features and noise: features being 
anything that can be used for diagnostic and/or prognostic purposes and noise is everything 
else. The left side of Figure 1 is an oscilloscope capture of the output of a switch-mode power 
supply: feature data (FD) includes ripple voltage, voltage droop (see the upper trace), and what 
is often termed to be spikes and glitches, such as that circled in red.  Typically, though, those 
spikes and glitches are what is called a damped-ringing response (right side of Figure 1). 

 

Figure 1. SMPS output voltage (left) and extracted damped-ringing response (right) 
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A damped-ringing response can be modeled as comprising many features such as a DC voltage, 
VDC; a response amplitude, AR; a dampening time constant, a frequency, and a phase 
shift, 𝜙  

 𝑉଴ = 𝑉ୈେ + 𝐴ோ{exp(−𝑡 𝜏⁄ )}{cos(𝝎𝑡 +  𝜙)}        (1) 

PoF analysis shows that as the filter capacitance of an SMPS degrades, the resonant frequency 
changes: 

𝝎 ≈  𝜔଴ඥ𝐶଴ (𝐶଴ − 𝛥𝐶⁄ )            (2) 

Then from 𝑓 = 𝜔 2𝜋⁄ = 𝐹𝐷,  

𝐹𝐷 =  𝐹𝐷଴ ඥ𝐶଴ (𝐶଴ − ∆𝐶⁄ )          (3) 

Substituting P0 (nominal parameter value) for C0 and dP (change in parameter) for ∆𝐶, the 
radical can be replaced by g(dP,P0 ): 

𝐹𝐷 =  𝐹𝐷଴ g(𝑑𝑃, 𝑃଴)          (4) 

Which is interpreted to mean the following: the measurement from a sensor is the nominal 
value of a parameter times a function that changes in correlation to degradation where dP is 
the change in value of that parameter. A fault-to-failure progression (FFP) data point is defined 
to be the following: 

𝐹𝐹𝑃௜ = (𝐹𝐷௜ − 𝐹𝐷଴ − 𝑁𝑀) 𝐹𝐷଴⁄      (5) 

Where NM is a constant value chosen to mitigate the effects of noise so that an FFP data point 
> 0 indicative of a degraded state. By collecting terms, and letting (−𝐹𝐷଴ − 𝑁𝑀) 𝐹𝐷଴⁄ =
− C (a constant),  Eq. (5) becomes 

𝐹𝐹𝑃௜ = 𝐹𝐷௜ 𝐹𝐷଴⁄ − C 

And by substitution using Eq. (4) 

𝐹𝐹𝑃௜ =  g(𝑑𝑃, 𝑃଴)  − C     (7) 

Fault-to-Failure Progression (FFP) Signature: 

A set of FFP data points forms a collection of normalized, dimensionless data obtained by 
transforming FD points starting with a particular point, m, and ending at a final point, m+n, 
that forms a signature (see Figure 2): 

𝑭𝑭𝑷 = {𝐹𝐹𝑃௠, 𝐹𝐹𝑃௠ାଵ, … 𝐹𝐹𝑃௠ା௡ିଵ, 𝐹𝐹𝑃௠ା௡}       (8) 
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Figure 2. FD extracted from CBD (left) and transformed into FFP data (right) 

Degradation Progression Signature (DPS) 

A DPS is a collection of transformed FFP signature points: it is a function of a change in value, 
𝑑𝑃, of a parameter of interest  𝑃଴: (1) when there is no degradation, the value of the parameter 
is unchanged and 𝑑𝑃 = 0; (2) as degradation progresses, the magnitude of 𝑑𝑃 increases: 

  𝑫𝑷𝑺 = {𝐷𝑃𝑆௠ , 𝐷𝑃𝑆௠ାଵ, … , 𝐷𝑃𝑆௠ା௡}     (9) 

𝐷𝑃𝑆௜ = 𝑑𝑃௜ 𝑃଴⁄        (10) 

A major advantage of DPS data is that its characteristic curve is defined by 𝑑𝑃௜ 𝑃଴⁄  and when 
that is linear, which is often the case, the DPS is linear. Even when 𝑑𝑃௜ 𝑃଴⁄  is not linear, a DPS 
signature curve is more linear than its underlying FFP signature. 

2. TRANSFORMING FFP SIGNATURES INTO DPS 

Degradation-related signatures result from failure modes that can be modeled as power 
functions or exponential functions (Table 1). To transform signatures from one form to another, 
the authors developed seven sets of degradation functions (Table 2): five are power functions 
and two are exponential functions, which have either increasing or decreasing amplitudes – 
constant signatures are only applicable in the sense that they indicate the absence of 
degradation. Signatures having decreasing amplitudes are transformed to a complementary, 
decreasing amplitudes are transformed to a complementary, increasing amplitude signature 
and degradation model. Degradation signatures are further classified by whether the signature 
has a decreasing or increasing slope angle as degradation progresses: a linear, straight-line 
degradation signature is a special case that is classified as having a constant slope angle.  The 
slope angle is the arc between a tangent to the curve and the horizontal axis. Sample plots of 
degradation functions and their DPS transforms are shown in Figure 3 through Figure 9. 
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Table 1.   Degradation Functions 

Function Set and Type Decreasing Amplitude Increasing Amplitude 

Set 1: Power-function −(𝑑𝑃௜/𝑃଴)௡ (𝑑𝑃௜/𝑃଴)௡ 

Set 2: Power-function 1 − [1 (1 − 𝑑𝑃௜ 𝑃଴⁄⁄ )]௡ [1 (1 − 𝑑𝑃௜ 𝑃଴⁄⁄ )]௡ − 1 

Set 3: Power-function [1 (1 + 𝑑𝑃௜ 𝑃଴⁄⁄ )]௡ − 1 1 − [1 (1 + 𝑑𝑃௜ 𝑃଴⁄⁄ )]௡ 

Set 4: Power-function 1 − (1 + 𝑑𝑃௜ 𝑃଴⁄ )௡ (1 + 𝑑𝑃௜ 𝑃଴⁄ )௡ − 1 

Set 5: Power-function (1 − 𝑑𝑃௜ 𝑃଴⁄ )௡ − 1  1 −  (1 − 𝑑𝑃௜ 𝑃଴⁄ )௡ 

Set 6: Exponential-function 1 − exp(𝑑𝑃௜ 𝑃଴⁄ ) exp(𝑑𝑃௜ 𝑃଴⁄ ) − 1 

Set 7: Exponential-function exp(− 𝑑𝑃௜ 𝑃଴⁄ ) − 1 1 − exp (−𝑑𝑃௜ 𝑃଴⁄ ) 

 

Table 2.   Transform Models 

Increasing FFP 

{FFP} = {(𝑭𝑫𝒊 − 𝐅𝐃𝟎)/𝑭𝑫𝟎)} 

𝑭𝑫𝒊 = 𝑭𝑫𝟎 𝒈(𝒅𝑷𝒊, 𝑷𝟎) 

𝒈(𝒅𝑷𝒊, 𝑷𝟎) 

Increasing DPS 

{DPS} = {(𝒅𝑷𝒊/𝑷𝟎)} 

𝒅𝑷𝒊/𝑷𝟎  = 𝒇(𝑭𝑭𝑷𝒊) 

𝒇(𝑭𝑭𝑷𝒊) 

DPS-based FFS 

{𝑭𝑭𝑺𝑫𝑷𝑺} = ({𝑫𝑷𝑺}/𝑭𝑳𝑫𝑷𝑺)𝟏𝟎𝟎 

𝑭𝑳𝑫𝑷𝑺 = 𝒉(𝑭𝑳𝑭𝑭𝑷) 

𝒉(𝑭𝑳𝑭𝑭𝑷) 

(𝑑𝑃௜/𝑃଴)௡ (𝐹𝐹𝑃௜)ଵ ௡⁄  ( 𝐹𝐿ிி௉)ଵ ௡⁄  

[1 (1 − 𝑑𝑃௜ 𝑃଴⁄⁄ )]௡ − 1 1 − 1 (𝐹𝐹𝑃௜ + 1)ଵ ௡⁄⁄  1 − 1/( 𝐹𝐿ிி௉ + 1)ଵ ௡⁄  

1 − [1 (1 + 𝑑𝑃௜ 𝑃଴⁄⁄ )]௡ 1 (1 − 𝐹𝐹𝑃௜)ଵ ௡⁄⁄ − 1 1 (1 − 𝐹𝐿ிி௉)ଵ ௡⁄⁄ − 1 

(1 + 𝑑𝑃௜ 𝑃଴⁄ )௡ − 1 (𝐹𝐹𝑃௜ + 1)ଵ ௡⁄ − 1 (𝐹𝐿ிி௉ + 1)ଵ ௡⁄ − 1 

 1 −  (1 − 𝑑𝑃௜ 𝑃଴⁄ )௡ 1 − (1 − 𝐹𝐹𝑃௜)ଵ ௡⁄  1 − (1 − 𝐹𝐿ிி௉)ଵ ௡⁄  

exp(𝑑𝑃௜ 𝑃଴⁄ ) − 1 ln(𝐹𝐹𝑃௜ + 1) ln(𝐹𝐿ிி௉ + 1) 

1 − exp (−𝑑𝑃௜ 𝑃଴⁄ ) ln(1 (1 − 𝐹𝐹𝑃௜)⁄ ) ln(1/(1 − 𝐹𝐿ிி௉)) 
 
 

 

Figure 3. Example FFP and DPS plots for 𝒇(𝒅𝑷𝒊, 𝑷𝟎) = (𝒅𝑷𝒊/𝑷𝟎)𝒏 
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Figure 4.  Example FFP and DPS plots for 𝒇(𝒅𝑷𝒊, 𝑷𝟎) = [𝟏 (𝟏 − 𝒅𝑷𝒊 𝑷𝟎⁄⁄ )]𝒏 − 𝟏 

 

 
Figure 5.  Example FFP and DPS plots for 𝒇(𝒅𝑷𝒊, 𝑷𝟎) = 𝟏 − [𝟏 (𝟏 + 𝒅𝑷𝒊 𝑷𝟎⁄⁄ )]𝒏 

 

 

Figure 6. Example FFP and DPS plots for 𝒇(𝒅𝑷𝒊, 𝑷𝟎) = (𝟏 + 𝒅𝑷𝒊 𝑷𝟎⁄ )𝒏 − 𝟏 
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Figure 7. Example FFP and DPS plots for 𝒇(𝒅𝑷𝒊, 𝑷𝟎) = 𝟏 − (𝟏 − 𝒅𝑷𝒊 𝑷𝟎⁄ )𝒏 

 

Figure 8. Example FFP and DPS plots for 𝒇(𝒅𝑷𝒊, 𝑷𝟎) = 𝐞𝐱𝐩(𝒅𝑷𝒊 𝑷𝟎⁄ ) − 𝟏 

 

 

Figure 9. FFP and DPS plots for 𝒇(𝒅𝑷𝒊, 𝑷𝟎) = 𝐞𝐱𝐩(𝒅𝑷𝒊 𝑷𝟎⁄ ) − 𝟏 and 𝒇(𝒅𝑷𝒊, 𝑷𝟎) = 𝟏 −
𝐞𝐱𝐩 (−𝒅𝑷𝒊 𝑷𝟎⁄ ) 
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3. TRANSFORMING DPS SIGNATURES INTO FUNCTIONAL FAILURE SIGNATURES (FFS) 

The term ‘functional failure’ rather than simply ‘failure’ or ‘physical failure’ should be used 
in prognostics. Functional failure means reaching a level of degradation at which a device or 
component and the assembly in which it is located no longer operates within specifications: 
functional failure is not absolute: it is dependent not only on the device, component, and 
assembly, but also on the application and the requirements for that application. A functional-
failure signature (FFS) is obtained by doing the following: 

1. For each failure mode of interest, collect historical data and/or experimental data and/or 
simulation data. 

2. Transform that data (CBD) into FFP signature data using Eq. (5):  

𝐹𝐹𝑃௜ = (𝐹𝐷௜ − 𝐹𝐷଴ − 𝑁𝑀) 𝐹𝐷଴⁄         . 

FFP signatures reduce modeling complexity because of the follow ing: (1) common 
amplitude units-of-measure – a relative ratio, (2) ratio values of zero or less are 
indicative of no degradation – use a sufficiently large value of NM, and (3) values 
greater than zero are indicative of degradation – a value greater than 1.0 indicates the 
signal has more than doubled in magnitude. 

3. Plot the FFP signature then compare and choose one, or maybe two, signature models 
from those shown in Figure 3 through Figure 9.  For example, consider the example 
shown in Figure 10: 

 

Figure 10: Example CBD-based and FFP signatures 

Instead of using physics of failure (PoF) and failure-mode effects analyses (FMEA) to 
determine the effects of the failure on CBD and then solving for 𝑑𝑃௜ 𝑃଴⁄ , use a heuristic 
approach: assume the solution is one of those listed in Table 2. For the example shown 
in Figure 10, by inspection and matching of curves, there are two candidate solutions: 

𝐷𝑃𝑆௜ = 1 − 1 (𝐹𝐹𝑃௜ + 1)ଵ ௡⁄⁄             (11) 

and 

𝐷𝑃𝑆௜ = ln(𝐹𝐹𝑃௜ + 1)             (12) 

Which results in the plots shown in Figure 11: the left-hand plots using n = 0.5 or n = 
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1.0 are more linear than the right-hand plot. 

 
Figure 11. Plots from using Eq. 11 (left side) and Eq. 12 (right side) 

 
4. Select or otherwise determine a value of FFP at which the prognostic-enabled device, 

component, or assembly is defined as functionally failed: FLFFP = FFP value at failure. 
That defines the level of degradation at which the device or component is no longer 
capable of operating within specifications.  Then calculate the equivalent failure DPS 
threshold. For example, suppose you decide to use FLFFP = 0.90 and n = 0.5 or 1.0, then 
from Table 2: 

𝐹𝐿஽௉ௌ = ℎ(𝐹𝐿ிி௉) = 1 − 1/( 𝐹𝐿ிி௉ + 1)ଵ ௡⁄     (13) 
 

𝐹𝐿஽௉ௌ = 0.72 for n = 0.5  and 𝐹𝐿஽௉ௌ = 0.47 for n = 1.0          . 
 

5. Then transform DPS data into FFS data, which results in the plots shown in Figure 12: 
note the two plots intersect each other at FFS amplitudes of 0 and 100%. 

𝑭𝑭𝑺ୈ୔ୗ = (𝑫𝑷𝑺 𝐹𝐿஽௉ௌ⁄ )100        (14) 

 

Figure 12. Example FFS plots 

Evaluate the FFS plots and determine whether to slightly change the value of n: for n = 0.40 
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instead of 0.50, the FFS plot is shown in Error! Reference source not found.. Compare that 
to an ideal FFS transfer curve – the dotted straight line. 

 
Figure 13. Final FFS plot using Eq. 14 with n = 0.40 in Eq. 11 and Eq. 14 

4. VERIFY RESULTS 

We define FFS nonlinearity (FNL) as a measure of the deviation between an actual FFS and 
an ideal FFS: very much like an integral nonlinearity (INL) assessment of an analog-to-digital 
data converter or transducer output transfer curve. A point-by-point FNL is a measurement of 
the error between an actual FFS value and the ideal FSS value at that point in time and is 
obtained using the following [6]-[9]:  

𝑇𝑇𝐹 =  𝑡ி஺ூ௅௎ோா − 𝑡ைேௌா்  calculate time-to-failure   (15) 

then for each point in the set {FFSi}, we create an ideal point,  

𝐼𝐷𝐸𝐴𝐿_𝐹𝐹𝑆௜ =  100 (𝑡௜ − 𝑡ைேௌா்) 𝑇𝑇𝐹⁄      (16) 

and calculate point-by-point nonlinearity and total nonlinearity: 

𝐹𝑁𝐿௜ = 𝐹𝐹𝑆௜ − 𝐼𝐷𝐸𝐴𝐿_𝐹𝐹𝑆௜       (17) 

Total FNL error (FNLE) provides an assessment of the nonlinearity of the FFS curve: 

𝐹𝑁𝐿ா =  max (abs({𝐹𝑁𝐿௜}))      (18) 

Figure 14 shows the non-linearity plot for transfer curve shown in Figure 13. 

Despite the relatively large variation in the data between the approximate times of 60 and 90 
seconds, the FNLE is less than 13 percent, which in the assessment of the authors is quite 
remarkable. This data, when input to a prediction algorithm employing estimation techniques 
such as Kalman filtering, is very likely to produce very accurate prognostic information.  
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Figure 14. Non-linearity for FFS shown in Figure 13 

 

 

 

5. SUMMARY 

In this paper a concept of signatures is introduced and an example given to illustrate CBD 
features that can be extracted as FD to create an FFP signature, which can be further 
transformed into DPS data and then into FFS data – one data point at time. Instead of rigorous, 
time-consuming, and error-prone PoF and FMEA analysis to derive transformation models, 
the paper describes a heuristic-based approach for advantageous used of a set of already 
derived models (Table 1 and Table 2) to transform CBD into FFS data for use as a transfer 
curve for producing prognostic information. An FFS progresses from 0 percent or less (no 
degradation) to 100 percent or higher (functionally failed). Next a method is introduced to 
evaluate non-linearity of FSS data (FNL): that method is based one used for evaluating the 
nonlinearity of data converters. 

Acknowledgements 

The authors thank Naval Air, Naval Sea, U.S. Army, U.S. Air Force, and NASA research centers for 
their support and funding of multiple projects that led to the results described and shown in this paper. 

References 

[1]   Hofmeister, J., Wagoner, R. and Goodman, D. (2013) “Prognostic Health Management (PHM) of 
Electrical Systems using Conditioned-based Data for Anomaly and Prognostic Reasoning,” Chemical 
Engineering Transactions, Vol. 33, pp. 992-996. 

[2]   Hofmeister, J. Szidarovszky, F. and Goodman, D. (2017) “An Approach to Processing Condition-
based Data for Use in Prognostic Algorithms,” 2017 Machine Failure Prevention Technology, Virginia 
Beach, VA, 15-18 May 2017. 

[3]   Medjaher, K. and Zerhouni, N. (2013) “Framework for a Hybrid Prognostics,” Italian Association of 
Chemical Engineering, Chemical Engineering Transactions, DOI: 10.3303/CET1333016, pp. 91-96, 
2013. 



MFPT 2018, Virginia Beach, VA, 15-17 May 2018 

 
 

11

[4]   Judkins, J. B., Hofmeister, J. and Vohnout, S. (2007) “A Prognostic Sensor for Voltage Regulated 
Switch-Mode Power Supplies,” IEEE Aerospace Conference 2007, Big Sky, MT, 4-9 Mar. 2007, 
Track 11-0804, pp. 1-8. 

[5]   Judkins, J. B. and Hofmeister, J. P. (2007) “Non-invasive Prognostication of Switch Mode Power 
Supplies with Feedback Loop Having Gain,” IEEE Aerospace Conference 2007, Big Sky, MT, 4-9 
Mar. 2007. 

[6]  Erickson, R. (1999), Fundamentals of Power Electronics, Norwell, MA: Kluwer Academic 
Publishers. 

[7] TI (1995) “Understanding Data Converters,” Application Report SLAA013, Texas 
Instruments, Inc., 1999. 

[8]  Carr, J.J. and Brown, J.M. (2000), Introduction to Biomedical Equipment Technology, 4th 
Ed., Upper Saddle River, New Jersey, Prentice Hall 

[9]  Jenq, Y.C. and Li, Qiong, (2002) “Differential Non-linearity, Integral Non-Linearity, and 
Signal to Noise Ratio of an Analog to Digital Converter,” Department of Electrical and 
Computer Engineering, Portland State University, P.O. Box 751, Portland, OR. 97207, USA. 


