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Abstract:  This paper describes a multiple-variable analysis (MVA) methodology to detect 
and prognose three types of faults associated with an electromechanical actuator (EMA): 
(1) loading faults, such as friction, on the shaft of an EMA motor, (2) shorting faults in the 
stator windings of the EMA motor, and (3) on-resistance faults in one or more power-
switching transistors used to convert direct voltage/current into alternating current. The 
presented methodology overcomes difficulties associated with typical multivariate analysis 
(as opposed to multiple-variable analysis) methods such as the following examples: solving 
simultaneous equations and performing a statistical-based analysis such as K-nearest 
neighbor (KNN) regression and other Euclidean-based distance methods. Examples of 
those difficulties are the following: (1) analysis methods that produced information suitable 
for classification rather than diagnosis or prognosis; (2) noisy data; (3) dependent data, 
rather than independent data; and (4) difficulty in processing test data to identify, extract, 
and use leading indicators of failure for prognostic purposes. The primary MVA solution 
methods included (1) noise mitigation, (2) a unique root-mean-square (RMS) of 
quantifying phase current values, and (3) a combination of nearest neighbor and distance 
methods of processing phase-current data to unequivocally identify and isolate faults and 
to prognose a future time at which functional failure is likely to occur. 
*ARULEAV is a trademark of Ridgetop Group, Inc. 
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1. INTRODUCTION 

A NASA-funded Small Business Innovation Research (SBIR) program on 
electromechanical actuators (EMAs) had the following objectives: deliver a Model-based 
Avionic Prognostic Reasoner (MAPR) for non-intrusive monitoring of the state of health 
(SoH) and remaining useful life (RUL) of electromechanical assets by using data obtained 
from a standard avionic data bus: see Figure 1. The following specific faults were 
identified: (1) loading faults, such as friction, on the shaft of an EMA motor, (2) shorting 
faults in the stator windings of the EMA motor, and (3) on-resistance faults in one or more 
power-switching transistors used to convert direct voltage/current into alternating current. 
[1]-[5] 
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Figure 1: Concept for a Model-based Avionic Prognostic Reasoner (MAPR). 

The proposed solution methodology seemed straightforward and not complicated: (1) solve 
a set of simultaneous equations and (2) use statistical methods, such as principal component 
analysis (PCA), K-nearest neighbor (KNN), and Euclidean distance methods; and (3) show 
how the test bed and methods would detect, isolate, and characterize EMA faults. An 
example of a set of models for multivariate analysis is shown in Figure 2 [5]. 
 

 
Figure 2: Example of Multivariate Analysis Modeling. 
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The data set was collected from a test bed (see Figure 3) for an EMA comprising a brushless 
DC motor (BLDC) driven by an H-bridge switching type of commutation (see Figure 4). 
[5] 

 
Figure 3: Test Bed Diagram. 

 
Figure 4: EMA Test Diagram. 
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In practice, the proposed initial methods were found not feasible because of, for example, 
the following: (1) analysis methods that produced information suitable for classification 
rather than diagnosis or prognosis; (2) noisy data (see Figure 5); (3) dependent, rather than 
independent, data; and (4) difficulty in processing test data to identify, extract, and use 
leading indicators of failure for prognostic purposes [5]. 

 
Figure 5: Example of Noisy Phase Current. 

A unique root-mean-square (rms) method was created for quantifying measured values of 
phase currents. A methodology based on KNN and distance methods is used to process 
feature data extracted from condition-based data (CBD) to unequivocally identify and 
isolate various types of faults, and to prognose future times of functional failure [5], [6]. 

 
Figure 6: Peak Threshold Values for Calculating RMS. 
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2. MVA SOLUTION: APPROACHES AND RESULTS 

Fault-Classification Algorithm 

PCA-based approach: An original objective of the program was to develop a fault-
classification algorithm based on principal component analysis (PCA) that would model a 
process, program rules to produce a vector of residual errors (such as the following errors 
seen in Figure 7), and group those errors using machine-learning methods such as support 
vector machines (SVM) and a self-organizing map (SOM) to determine the best approach 
for fault-classification solutions in complex EMA systems [5]. 

 
Figure 7: EMA Anomaly, Following Error Due to a Degraded Transistor in an H-bridge.  

Clustering algorithms such as K-Means, Jarvis-Patrick, or Unsupervised k-Windows for 
fault classification were to be considered to categorize excursions. Algorithms of this type 
are used to group the incoming data into separate clusters based on their statistical behavior.  

 
Figure 8: Block Diagram for Using PCA to Cluster Errors. 

The main objective of clustering is to find similarities between events and then group 
similar data or events together to assist in understanding relationships or classifications that 
might exist among them. [7]-[9] Also, self-organizing maps (SOM), support vector 
machines (SVM), and Bayesian classification were researched to classify them as either 
feed analyzer or effluent analyzer faults, while PCA is used to model processes by 
providing information about the state of the process. Those methodologies will be 
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categorized for different applications, and the strengths and weaknesses will be 
summarized and documented.  
 
Result: We concluded that using a PCA-based approach to develop fault-classification 
algorithms for EMAs had unnecessary redundancy. The rationale for that conclusion 
included the following: 
 

• PCA is a statistical procedure to convert a set of observations of possibly correlated 
variables into a set of uncorrelated variables (principal components).  Given a 
EMA as a base platform, given an EMA test bed, given designed, known faults 
that are injected into the test bed, 

• The set of principal components is known and is constrained by the specific EMA 
used in the test bed, the selection of the nodes at which faults are to be injected, 
the type of fault injected into the test bed, and the sensors (data collector) types 
and locations used in the test bed. 

 
PCA and classification is useful when historical data exist and data relationships are 
uncertain, when it is unclear how many uncorrelated variables are in the data; and when it 
is not known how to group uncorrelated variables. 
 
MVA Solutions: Modeling and Data Processing 

A common MVA-solution approach for identifying and isolating a number of faults, N, is 
to set up and solve a set of N simultaneous equations. For example, let FD represent a 
feature data associated with three phase currents (A, B, & C) and the number of faults be 
limited to three, then basic MVA modeling yields  

 
𝐹𝐹𝐹𝐹𝐴𝐴 = 𝐹𝐹𝐹𝐹𝐴𝐴1 + 𝐹𝐹𝐹𝐹𝐴𝐴2 + 𝐹𝐹𝐹𝐹𝐴𝐴3       (1) 
𝐹𝐹𝐹𝐹𝐵𝐵 = 𝐹𝐹𝐹𝐹𝐵𝐵1 + 𝐹𝐹𝐹𝐹𝐵𝐵2 + 𝐹𝐹𝐹𝐹𝐵𝐵3      (2) 
𝐹𝐹𝐹𝐹𝐶𝐶 = 𝐹𝐹𝐹𝐹𝐶𝐶1 + 𝐹𝐹𝐹𝐹𝐶𝐶2 + 𝐹𝐹𝐹𝐹𝐶𝐶3       (3) 

 
Then let V represent the phase voltage, ZW represent the impedance of the EMA-motor 
stator winding, ZT represent the total impedance of the switching transistor and the 
connections to-from the EMA-motor stator winding, and -ZM represent the effective 
impedance of the EMA-motor load reflected back into the EMA-motor stator winding. EQ. 
(1) through (3) become   
 

𝐹𝐹𝐹𝐹𝐴𝐴 = V𝐴𝐴(1 (𝑍𝑍𝑊𝑊𝐴𝐴 + 𝑍𝑍𝑇𝑇𝐴𝐴 − 𝑍𝑍𝑀𝑀𝐴𝐴⁄ ))      (4) 
𝐹𝐹𝐹𝐹𝐵𝐵 = V𝐵𝐵(1 (𝑍𝑍𝑊𝑊𝐵𝐵 + 𝑍𝑍𝑇𝑇𝐵𝐵 − 𝑍𝑍𝑀𝑀𝐵𝐵⁄ ))      (5) 
𝐹𝐹𝐹𝐹𝐶𝐶 = V𝐶𝐶(1 (𝑍𝑍𝑊𝑊𝐶𝐶 + 𝑍𝑍𝑇𝑇𝐶𝐶 − 𝑍𝑍𝑀𝑀𝐶𝐶⁄ ))      (6) 

  
where VA, VB, and VC are of the form 
 

𝑉𝑉 = V𝐷𝐷𝐶𝐶 + 𝑉𝑉𝐴𝐴𝐶𝐶(cos(𝜔𝜔𝜔𝜔 +  𝜃𝜃) + 𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)     (7) 
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With the restriction that the magnitude of -ZM be identical for all measured phase currents 
and V be identical for all measured phase currents, it was felt that using KNN and distance 
methods, any fault in any stator winding or switching-transistor circuit or excessive loading 
could be detected and isolated. 

 

3. MVA AND NOISE 

MVA Solutions: Noise is an Issue  

Statistical-based MVA modeling is difficult to apply in practice, including test beds 
because of noise issues. CBD (sampled by sensors and processed by hardware, firmware, 
and software) contains both FD and noise. Here, noise is defined as anything not related to 
FD, 
 

𝐶𝐶𝐶𝐶𝐹𝐹 = 𝐹𝐹𝐹𝐹 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  model for noisy CBD    (8) 
 
Power-supply noise: The DC voltage from a power-supply input to an EMA is noisy: the 
most significant in amplitude being the damped-ringing responses due to abrupt changes 
in load (see Figure 9). 

Actuator-movement noise: The magnitude of measured phase currents varies. One type 
of variation (noise) is associated with whether the actuator is lifting a load, such as wing 
surface, or lowering a load. Referring to Figure 8, the magnitude of the phase current is 
larger when a load is lifted compared to when a load is lowered.  

 
Figure 9: EMA Input Voltage – from the 

RD2400 (Green) Seen in Figure 4.  

 

 
Figure 10: Phase Currents – Lifting (Left) 

and Lowering (Right) a Load. 
Inertia and momentum noise: Move up (lift) or down (lower) commands cause an EMA 
to encounter load inertia and, similarly, when an actuator stops lifting or lowering a load, 
it encounters load momentum, which results in another type noise (Figure 11). 
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Normal-load and excessive-load noise: There is noise associated with the weight of a 
load - a normal load or an excessive load. For example, the right-hand plot in Figure 12 
exhibits more harmonic distortion compared to the left-hand plot. 

Electrical and cyclic-amplitude noise: Referring back to the bottom plot in Figure 5, 
phase current data exhibits noise marked ‘Electrical Noise’ and ‘Noisy Amplitude’ - 
electrical noise is primarily due to switching noise in the input DC voltage and noisy 
amplitude is due to level shifting because the three stator windings have a floating, common 
reference (refer back to Figure 4). 

Noise Filtering and Mitigation Methods 

Sampling and accuracy: A common method for filtering out noise is use data sampling 
as a low-pass filtering method: but at what sampling frequency? Since the frequency of the 
phase current is about 400 Hz, it might seem logical to sample at 800 Hz – to satisfy the 
Nyquist criteria: but that turns out to be too low of a sampling frequency.  
 
For example, suppose you want to measure the AC component of FD with an accuracy of 
at least 90%: then from EQ. (8) and letting S represent sampling frequency, N represent 
noise, and α represent accuracy (as a ratio), 
 

𝑆𝑆 ≥ (2 𝑎𝑎)𝑁𝑁𝐹𝐹𝐹𝐹𝑁𝑁𝐹𝐹𝐹𝐹𝑁𝑁𝑁𝑁𝐶𝐶𝐹𝐹⁄                  (9) 

  
Figure 11: Noise Associated with the Start-

Stop Lifting of a Load. 

 
Figure 12: Normal Load (Left), Excessive 

Load (Right). 
   
For a frequency of 400 Hz, EQ. (9) results in,       
 

𝑆𝑆 ≥ (2 0.10⁄ )400 =  8  kHz         
  
It turns out that 8 kHz is also too low because the frequency of the switching noise seen in 
Figure 9 is a little over 2.5 kHz, and from EQ. (9), you need a sampling frequency of more 
than 50 kHz to satisfy a 10% accuracy requirement. 
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Sampled data and loading: Since an objective of SBIR program is to detect excessive 
loading, such as too much weight and/or excessive friction, you need to sample data when 
the EMA is lifting a load rather than lowering a load. This means you need to provide a 
method for detecting the start of a positioning command and you need to determine whether 
the positioning direction is up or down. The test bed needs a positioning sensor, as shown 
by a green-colored block in Figure 4, and it needs firmware (or software) programming 
logic to setup a sampling window 

Sampling Window: Evaluation of the right-side plot in Figure 12 and experimenting with 
EMA positioning commands leads the following window specifications (block 5 in Figure 
4): (1) start sampling 0.25 s after a move-up command, (2) sample at 64 kHz for 0.50 s 
(32,000 data samples).  

MVA Solutions: Fault Testing 

Winding and Load Faults: The execution of a design of experiment when a winding type 
of fault (a reduced impedance in a stator winding) or a loading type of fault (increased 
lifting weight) is injected into the test bed yields results as predicted by the models of EQ. 
(4) – EQ. (6): referring to Figure 13, when a winding fault is injected into the test bed, only 
one of the three phase currents increase in amplitude, and when a load/friction fault is 
injected into the test bed, all three phase currents increase in amplitude. 

 
Figure 13: Phase Currents for a Winding Fault (Left) and Load (Friction) Fault (Right). 

Switching Transistor Fault: A switching transistor fault is injected into the test bed by 
inserting a low-value resistance in series with one of the six transistors in the h-bridge. The 
experiment is deemed a failure because there is no significant in measured amplitude of 
the phase currents. This is because the on-resistance of a switching transistor, compared to 
the impedance of a stator winding, is too low: this is verified by experimentation and 
simulation. A degraded transistor in one of the six current branches in the h-bridge (Figure 
4) causes a change in the current amplitude of either the positive or the negative half of one 
of the three phase currents. Because of a floating reference topology in the motor of the 
EMA (right-hand diagram in Figure 14), the reference levels of the three phase currents 
shift with respect to each other (left-hand plot in Figure 14). 



10 
 
 

 
Figure 14: Data Caused by a Degraded Transistor (left) and BLDC Motor (Right).  

More importantly, the impedance presented by those switching transistors is significantly 
smaller in comparison to the impedance of the stator windings: changes in the amplitude 
caused by transistor degradation are lost in the noise of all other variations in current 
amplitude. Even when the series impedance of a rectifying branch in the h-bridge is 
increased from 0.01 Ω to 1.0 Ω (a functionally-failed value), the maximum change in peak 
current was about 25 mA – less than 3.0% (see Figure 15).   

 
Figure 15: Amplitude Change – Transistor On-Resistance Increased by 10x. 

4. MVA SOLUTION: SPECIAL RMS 

We developed a unique, innovative solution: (1) define peak-threshold levels (TPEAK); (2) 
truncate all values of current below the positive threshold and above the negative threshold; 
(3) calculate the magnitudes of the positive phases (PRMS) and negative phases (N_RMS) 
and (4) sum the magnitudes. This method emphasizes any differences between peak current 
values and the defined thresholds. 
 
Algorithm: Special RMS, 

𝑇𝑇𝑃𝑃𝑁𝑁𝐴𝐴𝑃𝑃 =  0.70  set threshold level     (10) 
𝐼𝐼𝑃𝑃𝑁𝑁𝐴𝐴𝑃𝑃 =  900  set nominal value of peak current (mA)  (11) 
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 𝐼𝐼𝑇𝑇𝐹𝐹𝐹𝐹𝑁𝑁𝐶𝐶 = 𝑇𝑇𝑃𝑃𝑁𝑁𝐴𝐴𝑃𝑃 ∗ 𝐼𝐼𝑃𝑃𝑁𝑁𝐴𝐴𝑃𝑃       (12) 
 
When  (�(�) > 0) && (�(�) > ������)   then letting P = count of true 
 

𝑃𝑃𝐹𝐹𝑀𝑀𝑁𝑁 =  [(1 𝑃𝑃⁄ )∑ (𝐼𝐼(𝑛𝑛) − 𝐼𝐼𝑇𝑇𝐹𝐹𝐹𝐹𝑁𝑁𝐶𝐶)𝑛𝑛
1 ]  do not square   (13) 

 
When  (�(�) < 0 && �(�) < −������   then letting N = count of true 
 

𝑁𝑁𝐹𝐹𝑀𝑀𝑁𝑁 =  [(1 𝑁𝑁⁄ )∑ (𝐼𝐼𝑇𝑇𝐹𝐹𝐹𝐹𝑁𝑁𝐶𝐶 − 𝐼𝐼(𝑛𝑛)) 𝑛𝑛
1 ]   do not square   (14) 

 
Take a difference summation 
 

𝐼𝐼𝐹𝐹𝑀𝑀𝑁𝑁 =  𝑃𝑃𝐹𝐹𝑀𝑀𝑁𝑁 + 𝑁𝑁𝐹𝐹𝑀𝑀𝑁𝑁   Sum the differences   (15) 

 
Figure 16. Illustration of Special-rms Method 

Algorithm Result: Examples 

The left-hand plot in Figure 17 illustrates the result of applying the special-rms algorithm 
to one sinusoid of a phase current in which the switching transistor in the positive branch 
is degraded. The algorithm was applied to all three sets of measured current data and plotted 
as shown in Figure 17. 

 
Figure 17: Plots of Test Data (3 Phases) After Special-rms Method. 

The data is collected and conditioned, transformed to functional-failure signature (FFS) 
data, further conditioned, and input to a prediction algorithm: one data point at time, to 
produce (1) the conditioned data shown in Figure 18 (left) ; (2) the conditioned FFS data 
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shown in Figure 18 (right); and prognostic information from the prediction algorithm is 
plotted in Figure 19. 
 
Prognostic Information 

The prediction algorithm accepts FFS input data, processes the input, and produces 
prognostic information – one data point at a time.  The prognostic information comprises 
Remaining Useful Life (RUL), prognostic horizon (PH), and State of Health (SoH). The 
FFS data plotted in Figure 18 produced the prognostic information plotted in Figure 19. 

 
Figure 18: Conditioned Data (Left) – Transformed to Smoothed FFS (Right). 

 
Figure 19: Prognostic Information – RUL & PH (Left) and SoH (Right). 

Prognostic Accuracy 

The prediction algorithms in a program called ARULEAV (Adaptive RUL Estimation – 
Advanced Version) employs a number of algorithms to produce very accurate prognostic 
estimates (refer to Figure 20): 

Treat data point as a particle having momentum and inertia that tend to maintain 
direction and speed – use weighting and coefficients. 

Data points tend to move in a data space from lower-left corner to upper-right corner – 
a random walk. 
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Data points form a characteristic curve that is represented by three data spaces 
concatenated together from bottom to top, left to right, at the corners – employ 
piece-wise solution methods. 

Employ Kalman-like filtering 
 Remember the time when degradation is detected (BD) 
 Remember the last data point 
 Use the data space models to predict where the next data point should be 
 Compare predicted point to sampled next data point – the sample time (ST) 

o Compute a compromise between predicted and actual data point 
o Adjust the model lengths to correspond to the computed point 
o Use the adjusted model to estimate when functional failure (EOL) occurs 
o Compute RUL = EOL – ST 
o Compute SoH = 100% * (EOL-RUL)/EOL 
o Compute PH = ST + RUL = estimated EOL (relative to BD) 

 
Figure 20. Diagram of a 3-stage PHM System. 

ARULEAV also incorporates fast-convergence algorithms that generally produces PH 
estimates within an alpha (α) accuracy of 25% within 10 data points with a standard 
deviation of 3 points.  

5. CONCLUSION 

Statistical modeling and methods such as PCA and machine learning methods such as SVM 
and Euclidean distance proved not be helpful in prognostic enabling an EMA: primarily 
because we designed and built an EMA test bed with predetermined fault injection 
locations and means, and data was collected using known sensors located at specific nodes 
in the test bed. Therefore, the existence of or lack of correlation between the variables of 
the collected data was known, and the principal components of the data (voltage, ripple, 
phase current, and so on) was known or readily identified by examination of the data. 
 
We did use the concepts of KNN and distance methods to identify and located faults: 
winding versus load/friction versus switching transistor. 
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The filtering and mitigation of noise was the most significant issue that had to be addressed 
to provide a prognostic solution for winding and load faults in an EMA. Because of the 
large difference in the values of the impedance of the EMA stator windings compared to 
the on resistance of switching transistors, a special-rms method had to be developed to 
detect and process phase currents. 
 
In the end, we developed an effective solution for EMA monitoring.  The prognostic 
information is produced by conditioning and transforming phase current data into signature 
data as input to prediction algorithms resulted in fast and accurate prognostic information.  
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	Inertia and momentum noise: Move up (lift) or down (lower) commands cause an EMA to encounter load inertia and, similarly, when an actuator stops lifting or lowering a load, it encounters load momentum, which results in another type noise (Figure 11).
	Normal-load and excessive-load noise: There is noise associated with the weight of a load - a normal load or an excessive load. For example, the right-hand plot in Figure 12 exhibits more harmonic distortion compared to the left-hand plot.
	Electrical and cyclic-amplitude noise: Referring back to the bottom plot in Figure 5, phase current data exhibits noise marked ‘Electrical Noise’ and ‘Noisy Amplitude’ - electrical noise is primarily due to switching noise in the input DC voltage and ...
	𝑆≥(,2-𝑎),𝑁-𝐹𝑅𝐸𝑄𝑈𝐸𝑁𝐶𝑌..                 (9)
	𝑆 ≥,,2-0.10..400= 8  kHz

	Sampling Window: Evaluation of the right-side plot in Figure 12 and experimenting with EMA positioning commands leads the following window specifications (block 5 in Figure 4): (1) start sampling 0.25 s after a move-up command, (2) sample at 64 kHz fo...
	Winding and Load Faults: The execution of a design of experiment when a winding type of fault (a reduced impedance in a stator winding) or a loading type of fault (increased lifting weight) is injected into the test bed yields results as predicted by ...
	Switching Transistor Fault: A switching transistor fault is injected into the test bed by inserting a low-value resistance in series with one of the six transistors in the h-bridge. The experiment is deemed a failure because there is no significant in...
	,𝑇-𝑃𝐸𝐴𝐾.= 0.70  set threshold level     (10)
	,𝐼-𝑃𝐸𝐴𝐾.= 900  set nominal value of peak current (mA)  (11)
	,𝐼-𝑇𝑅𝑈𝑁𝐶.=,𝑇-𝑃𝐸𝐴𝐾.∗,𝐼-𝑃𝐸𝐴𝐾.       (12)
	,𝑃-𝑅𝑀𝑆.= [,,1-𝑃..,1-𝑛-(𝐼,𝑛.−,𝐼-𝑇𝑅𝑈𝑁𝐶.).]  do not square   (13)
	,𝑁-𝑅𝑀𝑆.= [,,1-𝑁..,1-𝑛-(,𝐼-𝑇𝑅𝑈𝑁𝐶.−𝐼,𝑛.) .]   do not square   (14)
	,𝐼-𝑅𝑀𝑆.= ,𝑃-𝑅𝑀𝑆.+,𝑁-𝑅𝑀𝑆.   Sum the differences   (15)


