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Abstract—This paper describes the transformation of 
conditioned-based data (CBD) signatures into functional-failure 
signatures (FFS) that are particularly amenable to processing 
by prediction algorithms. CBD signatures comprise feature data 
(FD) that creates a signature that is highly correlated to 
degradation. Degradation proceeds from the onset of damage to 
a level of damage at which a component, and its assembly, no 
longer functions within operational specifications: functional 
failure occurs. A CBD-based feature signature correlates a 
change in value (dP) of a parameter of interest (P0) as 
degradation progresses.  This paper presents a theory that each 
failure mode generates a characteristic degradation signature: 
g(dP,P0). Further, a feature signature can be transformed into a 
dimensionless ratio to create a fault-to-failure progression 
(FFP) signature: FFP = {f(FDi,FD0)g(dPi,P0)} that, when solved 
in terms of another ratio, creates a degradation progression 
signature (DPS): DPS =  {dPi/P0} = {f(FFPi)}. 

 Absent noise, a DPS is a linear straight-line transfer curve that 
is easily transformed into a functional-failure signature (FFS) 
that is particularly amenable to processing to produce 
prognostic information in support of Prognosis for Health 
Monitoring/Management (PHM): (1) an FFS approaches an 
ideal straight-line transfer curve as noise is ameliorated and/or 
mitigated; (2) has negative values in the absence of degradation; 
(3) has positive values below 100 when there is degradation 
below a defined level of functional failure; and (4) has values at 
or above 100 when the level of degradation is at or above a level 
defined as functional failure. Even in the presence of noise and 
feedback effects, and even when the rate of degradation is 
nonlinear, a DPS is still a very linear transfer curve. 

The authors present seven different families of increasing 
signatures and decreasing signatures that can be represented by  
seven degradation-signature models that, coupled with models 
for defining a level of function failure, are used to transform 
CBD-based signature data into FFS data. 
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1. INTRODUCTION 

This paper briefly reviews prognostics: its purpose and 
benefits, including the acquisition of data in support of 
reliable condition-based monitoring (RCM) using condition-
based data (CBD). A concept is introduced that CBD 
signatures that have characteristic curves related to changes 
in value(s) as a parameter degrades. A switched-mode power 
supply (SMPS) having a filter capacitance that degrades is 
used as an example to illustrate how a characteristic CBD 
signature is transformed into a fault-to-failure progression 
(FFP) signature; how that FFP signature is transformed into 
a degradation-progression signature (DPS); and how that 
DPS is transformed into a functional-failure signature (FFS) 
that is particularly amenable for processing by prediction 
algorithms to produce prognostic information such as 
remaining useful life (RUL) and state-of-health (SoH) 
estimates. 

Next, seven sets of models are presented to generate CBD 
signatures, their characteristic curves, their related models for 
transforming CBD signature data into DPS data, and then into 
FFS data. The models are used to transform signatures from 
one form to other forms. Plots are included to illustrate the 
usefulness of such transforms.  

The paper ends with a summary. Details on derivation and 
modeling are included in an appendix. 

2. PROGNOSTICS 

Prognostics is an ability to accurately detect and report future 
failures in systems.  The purpose of prognostics is to detect 
degradation and create prognostic information such as 
estimates of  SoH and RUL of systems for the following 
benefits: (1) provide advance warning of failures; (2) 
minimize unscheduled maintenance; (3) predict the time to 
perform preventive replacement; (4) increase maintenance 
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cycles and operational readiness; (5) reduce sustainment 
costs by decreasing inspection, inventory, and down-time 
costs; and (6) increase reliability by improving the design and 
logistic support of existing systems [1, 2, 3].  

Referring to Figure 1, prognostics includes data acquisition 
(DA) by sensors (S) and data manipulation (DM) by 
processing within a sensor framework. Additional processing 
within a feature-vector framework to include detection, 
isolation, and identification. That state detection (SD) 
produces feature data (FD) that are condition indicators that 
comprise leading indicators of failure (signatures). Health 
assessment (HA) and prognostic assessment (PA) are 
performed within a prediction framework. The sensor 
framework, feature-vector framework, prediction 
framework, and a control and data flow framework comprise 
a prognosis subsystem within a prognosis and health 
management (PHM) system. [4, 5] 

Figure 2 shows approaches to prognostics: three classical 
approaches – model-driven, data-driven, and hybrid-driven – 

and a CBD approach that often employs analysis and 
modeling techniques such as reliability modeling, physics-of-
failure (PoF) analysis, and failure-mode effects analysis 
(FMEA). The reliability of a CBM approach for prognostics 
is dependent on reliable and accurate prognostic information, 
which depends on how accurately the sensing system collects 
and conditions data and how accurately that data is processed 
by prediction algorithms in producing prognostic 
information. Curvilinear CBD that is reliably and accurately 
transformed into linearized data is very useful for processing 
to produce reliable and accurate prognostic information.  

The focus of this paper is transforming condition-based data 
(CBD) signatures into fault-to-failure progression (FFP) 
signatures, degradation-progression signatures (DPS), and 
functional-failure signatures (FFS) [6, 7, 8].  FFS data as 
input into a prediction framework, such as that shown in 
Figure 3, increases the reliability and accuracy of prognostic 
information such as RUL and SoH estimates.  

 

Figure 1. Core prognostic frameworks in a PHM system (after [4]) 

 

Figure 2. Classical and CBD approaches to prognostics (after [1]) 
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Figure 3. Example PHM system showing core frameworks (after [5]) 

3.  SIGNATURES  

A signature characterizes a feature of interest, such as feature 
data (FD) that changes in amplitude over a period of time: 
ܶ ൌ ሼݐ௠, ,௠ାଵ	ݐ  ሽ. Amplitude refers to a	௠ା௡ݐ	…
characteristic value such as voltage, current, resistance, force, 
energy and so on that changes as the magnitude of 
damage/degradation increases over time: 

ࡰࡲ ൌ ሼܦܨ௠,	ܦܨ௠ାଵ,…	ܦܨ௠ା௡ିଵ,  ௠ା௡ሽ     (1)ܦܨ

Four sets of signature data of interest related to signals and 
prognostic processing are identified: CBD (in terms of FD), 
FFP, DPS, and FFS. An FFP signature is a transform of a 
CBD signature to reduce modeling complexity and a DPS 
signature is a transform of an FFP signature to further reduce 
modeling complexity and to increase the reliability and 
accuracy of prognostic information. An FFS is a transform of 
either an FFP or a DPS signature that is particularly amenable 
to processing by prediction algorithms because of 
commonality of FFS signatures and values. 

Condition-based Data (CBD) Signature 

A sensor is located at a node of prognostic interest to monitor 
and collect data. An example is the output node of a switch-
mode power supply (SMPS): the output voltage (Figure 4) 
comprises multiple types of features and noise, including 
damped-ringing responses, switching noise from power 
transistors, ripple voltage, pulse-width modulator effects, 
effects of  voltage and current regulation and feedback, and 
background noise. Sensors can be designed to support the 
isolation and extraction of leading indicators of failure, such 
as a damped-ringing response (Figure 5) seen in the output of 
a SMPS. [6, 7, 9 – 12] 

܄ ൌ ଵܦܤܥ	 ൅ ଶܦܤܥ ൅ ௡ܦܤܥ⋯ ൅ ଵܰ ൅ ଶܰ ൅ ܰ௠	 (2)	

	

Figure 4. Voltage at the output node of an SMPS 

.  

Figure 5. Damped-ringing response 

Signal processing isolates, extracts, conditions, and 
transforms data to create a particular FD value, such as the 
resonant frequency of a damped-ringing response. A 
collection of FD points over time is a CBD signature: an 
example of which is shown in Figure 6.  

An idealized damped-ringing response can be modeled as 
multiple features of interest including the following: a DC 
voltage VDC, a response amplitude AR, a dampening time 
constant a frequency and a phase shift	߶ 

	 ଴ܸ ൌ ୈܸେ ൅ ݐோሼexpሺെܣ ߬⁄ ሻሽሼcosሺ߱ݐ ൅ 	߶ሻሽ		   (3)	

PoF analysis shows that as the filter capacitance of an SMPS 
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degrades, the resonant frequency changes: [10, 11] 

߱ ൎ	߱଴ඥܥ଴ ሺܥ଴ െ Δܥ⁄ ሻ			 	 	   (4)	

Then from ݂ ൌ ߱ ⁄ߨ2 ൌ   ,[10] ܦܨ

ܦܨ ൌ ଴ܥඥ	଴ܦܨ	 ሺܥ଴ െ Δܥ⁄ ሻ		 	 		  (5) 

 

Figure 6. Resonant frequency over time 

Fault-to-Failure Progression (FFP) Signature 

An FFP signature (see Figure 7) is a collection of normalized, 
dimensionless data obtained by transforming FD points 
starting with a particular point, m, and ending at a final point, 
m+n :	 

ࡼࡲࡲ ൌ ሼܨܨ ௠ܲ,	ܨܨ ௠ܲାଵ,…	ܨܨ ௠ܲା௡ିଵ, ܨܨ ௠ܲା௡ሽ	 				(6) 

Where the FFP point for an i-th FD point is given by the 
following in which NM is noise margin (NM/FD0 in Figure 
7). [7] 

ܨܨ ௜ܲ ൌ ሺܦܨ௜	 െ ଴ܦܨ െ ሻܯܰ ⁄଴ܦܨ 	 				ሺ7ሻ	

 

Figure 7. FFP transformed from CBD in Figure 6 

Compared to CBD signatures, FFP signatures are more 
amenable to prognostic processing because normalized, 
dimensionless data simplifies modeling and processing. 

Values at or below zero indicate an absence of detectable 
degradation and values greater than zero indicate a presence 
of degradation.  Functional failure occurs when degradation 
reaches a defined level: for example, 0.60 for one application 
and 0.70 for another application. 

FFP-based Functional-failure signature (FFS) 

Since functional failure occurs when degradation reaches a 
defined FFP value, a prediction algorithm that processes FFP 
signature data needs application-specific knowledge such as 
a failure threshold value and/or FFP model. To address that 
consequence, we introduce the FFS signature produced by 
dividing FFP signature data by a defined failure level (FL) 
and multiplying the result by 100: 

୊୊୔ࡿࡲࡲ ൌ ሺࡼࡲࡲ ⁄ܮܨ ሻ100	 	 (8) 

While such FFS data has the same, generally curvilinear, 
characteristic shape as the FFP signature it is based on, the 
signature simplifies processing by prediction algorithms (see 
Figure 8): 

 ܨܨ ௜ܵ	൑	0		 	 no	degradation	
 0	൏	ܨܨ ௜ܵ	൏	100	 	 degradation	
 ܨܨ ௜ܵ	൒	100		 	 functionally	failed	

	

 

Figure 8. FFS based on the FFP in Figure 6: FL = 0.7 

A disadvantage of FFP-based FFS data is the signature is 
generally curvilinear: it has the same characteristic curve as 
the original CBD signature as seen by comparing Figure 6 
and Figure 8. 

Degradation Progression Signature (DPS) 

A DPS is a collection of transformed FFP signature points: it 
is a function of a change in value, ݀ܲ, of a parameter of 
interest  ଴ܲ: (1) when there is no degradation, the value of the 
parameter is unchanged and ݀ܲ ൌ 0; (2) as degradation 
progresses, the magnitude of ݀ܲ increases: 

ࡿࡼࡰ	  ൌ ሼܵܲܦ௠	,	ܵܲܦ௠ାଵ,… ,  ௠ା௡ሽ (9)ܵܲܦ
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ܲܦ ௜ܵ ൌ ݀ ௜ܲ ଴ܲ⁄    (10) 

From Eq. (5) and Eq. (7), for our exemplary SMPS, and using 
Eq. (9) and Eq. (10) as shown in Appendix A, we get the 
following: 

௜ܦܨ ൌ ሺඥ	଴ܦܨ	 ଴ܲ ሺ ଴ܲ െ ݀ ௜ܲ⁄ ሻሻ          (10) 

Solving for ݀ ௜ܲ ଴ܲ⁄  in Eq. (10) leads to the following (see 
Appendix A): 

ܲܦ ௜ܵ ൌ ݀ ௜ܲ ଴ܲ⁄ ൌ 1 െ ሺܦܨ଴	 ⁄୧ܦܨ ሻଶ (11) 

A major advantage of DPS data is that its characteristic curve 
is defined by ݀ ௜ܲ ଴ܲ⁄  and when that is linear, which is often 
the case, the DPS is linear. Even when ݀ ௜ܲ ଴ܲ⁄  is not linear, a 
DPS signature curve is more linear than its underlying FFP 
signature. Figure 9 plots the DPS from using Eq. (11) to 
transform the FFP plotted in Figure 7. 

 

Figure 9. DPS from the FFP signature in Figure 7 

DPS-based FFS 

FFS data based on DPS data is functionally the same as FFS 
data based on FFP signature data: 

ୈ୔ୗࡿࡲࡲ ൌ ሺࡿࡼࡰ ⁄஽௉ௌܮܨ ሻ100	 			 (12) 

To ensure equivalency, the failure level for DPS data must be 
derived from the FFP-based failure level. For this example 
(see Appendix B),  

஽௉ௌܮܨ ൌ 1 െ ሺ1 ሺ	1 ൅ ⁄ிி௉ሻܮܨ ሻଶ    (13) 

As example and referring back to Figure 7, suppose we 
defined functional failure to occur at FFP = 0.70, then from 
Eq. (13) we calculate the equivalent DPS-based failure level 
to be 0.65 with plotted FFS results shown in Figure 10:  

஽௉ௌܮܨ ൌ 1 െ ሺ1 1.70ሻ⁄ ଶ ൌ	0.65 

Model Verification 

It is important to verify models used in a PHM system: 
simulate models against experimental and/or actual fielded 
data. When FFS data is input to prediction algorithms in your 
PHM system, the resultant prognostic information needs to 
meet the accuracy, convergence, and reliability requirements. 
Model verification starts with a general form: 

	ܦܨ ൌ ,଴݂ሺ݀ܲܦܨ		 ଴ܲ)  (14) 

where the degradation function, ݂ሺ݀ܲ, ଴ܲ), depends on, for 
example, the component that is degrading and the failure 
mode. and the physics-of-failure. The degradation function 
for the example of Eq. (10) is the following:  

݂ሺ݀ܲ, ଴ܲሻ ൌ ඥ ଴ܲ ሺ ଴ܲ െ ݀ ௜ܲ⁄ ሻ 

 

Figure 10. FFS plots showing equivalent failure levels 

Compare signatures—One verification step is to compare 
ideal model signatures to those of actual and/or experimental 
data. For example, Figure 11 shows there is a difference 
between the plots of the exemplary CBD signature and the 
plots of an ideal CBD from Eq. (10): 

 

Figure 11. FFS plots showing equivalent failure levels 
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Explain variations—Another verification step is to explain 
variations/differences between what is obtained and what 
was expected: then either accept and/or remedy any variation. 
For example, referring to Figure 12, the major difference 
between the plots of the experimental data and the simulated 
(ideal) data was determined to be (A) the effects of the 
regulation feedback loop in the power supply and (B) step-
like changes resulting from a test-bed method for injecting 
faults (loss of capacitance).  This comparison explains the 
nonlinearity of the DPS-based FFS and an ideal, straight-line 
FFS – the ‘dot-dash’ straight line in Figure 10. 

 

Figure 12. Comparison of actual and simulated CBD 

Non-linearity—Another verification step is to evaluate the 
nonlinearity of an FSS signature compared to an ideal straight 
line. We define FFS nonlinearity (FNL) as a measure of the 
deviation between an actual FFS and an ideal FFS (see Figure 
13): very much like an integral nonlinearity (INL) assessment 
of an analog-to-digital data converter (ADC) or transducer 
output transfer curve [13,14,15].  

 

Figure 13. FNL for DPS- and FFP-based FFS data 

A point-by-point FNL is a measurement of the error between 
an actual FFS value and the ideal FSS value at that point in 
time and a total FNL error (FNLE) provides an assessment of 
the nonlinearity of the FFS curve (see Figure 14 and 
Appendix C).  

 

 

Figure 14. Example of point-by-point FNL for FFS data 

 

4. DPS AND FSS MODELING 

Degradation-related signatures result from failure modes that 
can be modeled as power functions or exponential functions. 

Degradation Functions 

To transform signatures from one form to another, the authors 
developed seven sets of degradation functions (see Table 1): 
five are power functions and two are exponential functions, 
which have either increasing or decreasing amplitudes – 
constant signatures are only applicable in the sense that they 
indicate the absence of degradation. Signatures having 
decreasing amplitudes are transformed to a complementary, 
increasing amplitude signature and degradation model. 
Degradation signatures are further classified by whether the 
signature has a decreasing or increasing slope angle as 
degradation progresses: a linear, straight-line degradation 
signature is a special case that is classified as having a 
constant slope angle.  The slope angle is the arc between a 
tangent to the curve and the horizontal axis. Sample plots of 
degradation functions and their DPS transforms are shown in 
Figure 15 through Figure 21. 
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Table 1.   Degradation Functions 

Function Set and Type Decreasing Amplitude Increasing Amplitude 

Set 1: Power-function െሺ݀ ௜ܲ/ ଴ܲሻ௡ ሺ݀ ௜ܲ/ ଴ܲሻ௡ 

Set 2: Power-function 1 െ ሾ1 ሺ1 െ ݀ ௜ܲ ଴ܲ⁄⁄ ሻሿ௡ ሾ1 ሺ1 െ ݀ ௜ܲ ଴ܲ⁄⁄ ሻሿ௡ െ 1 

Set 3: Power-function ሾ1 ሺ1 ൅ ݀ ௜ܲ ଴ܲ⁄⁄ ሻሿ௡ െ 1 1 െ ሾ1 ሺ1 ൅ ݀ ௜ܲ ଴ܲ⁄⁄ ሻሿ௡ 

Set 4: Power-function 1 െ ሺ1 ൅ ݀ ௜ܲ ଴ܲ⁄ ሻ௡ ሺ1 ൅ ݀ ௜ܲ ଴ܲ⁄ ሻ௡ െ 1 

Set 5: Power-function ሺ1 െ ݀ ௜ܲ ଴ܲ⁄ ሻ௡ െ 1 	1 െ	ሺ1 െ ݀ ௜ܲ ଴ܲ⁄ ሻ௡ 

Set 6: Exponential-function 1 െ expሺ݀ ௜ܲ ଴ܲ⁄ ሻ expሺ݀ ௜ܲ ଴ܲ⁄ ሻ െ 1 

Set 7: Exponential-function expሺെ݀ ௜ܲ ଴ܲ⁄ ሻ െ 1 1 െ exp	ሺെ݀ ௜ܲ ଴ܲ⁄ ሻ 

Table 2.   Transform Models 

Increasing FFP 

{FFP} = {ሺ࢏ࡰࡲ െ ۴۲૙ሻ/ࡰࡲ૙ሻሽ 
࢏ࡰࡲ ൌ ,࢏ࡼࢊሺࢍ	૙ࡰࡲ  ૙ሻࡼ

,࢏ࡼࢊሺࢍ  ૙ሻࡼ

Increasing DPS 

{DPS} = {ሺࡼ/࢏ࡼࢊ૙ሻሽ 
૙ࡼ/࢏ࡼࢊ 	ൌ  ሻ࢏ࡼࡲࡲሺࢌ

 ሻ࢏ࡼࡲࡲሺࢌ

DPS-based FFS 

 ሻ૚૙૙ࡿࡼࡰࡸࡲ/ሽࡿࡼࡰ}) = {ࡿࡼࡰࡿࡲࡲ}

ࡿࡼࡰࡸࡲ ൌ  ሻࡼࡲࡲࡸࡲሺࢎ
 ሻࡼࡲࡲࡸࡲሺࢎ

ሺ݀ ௜ܲ/ ଴ܲሻ௡ ሺܨܨ ௜ܲሻଵ ௡⁄   ሺ	ܮܨிி௉ሻଵ ௡⁄  

ሾ1 ሺ1 െ ݀ ௜ܲ ଴ܲ⁄⁄ ሻሿ௡ െ 1 1 െ 1 ሺܨܨ ௜ܲ ൅ 1ሻଵ ௡⁄⁄   1 െ 1/ሺ	ܮܨிி௉ ൅ 1ሻଵ ௡⁄  

1 െ ሾ1 ሺ1 ൅ ݀ ௜ܲ ଴ܲ⁄⁄ ሻሿ௡ 1 ሺ1 െ ܨܨ ௜ܲሻଵ ௡⁄⁄ െ 1  1 ሺ1 െ ிி௉ሻଵܮܨ ௡⁄⁄ െ 1 

ሺ1 ൅ ݀ ௜ܲ ଴ܲ⁄ ሻ௡ െ 1 ሺܨܨ ௜ܲ ൅ 1ሻଵ ௡⁄ െ 1  ሺܮܨிி௉ ൅ 1ሻଵ ௡⁄ െ 1 

	1 െ	ሺ1 െ ݀ ௜ܲ ଴ܲ⁄ ሻ௡ 1 െ ሺ1 െ ܨܨ ௜ܲሻଵ ௡⁄   1 െ ሺ1 െ ிி௉ሻଵܮܨ ௡⁄  

expሺ݀ ௜ܲ ଴ܲ⁄ ሻ െ 1 lnሺܨܨ ௜ܲ ൅ 1ሻ  lnሺܮܨிி௉ ൅ 1ሻ 

1 െ exp	ሺെ݀ ௜ܲ ଴ܲ⁄ ሻ lnሺ1 ሺ1 െ ܨܨ ௜ܲሻ⁄ ሻ  lnሺ1/ሺ1 െ  ிி௉ሻሻܮܨ
 
 

 

Figure 15. Example FFP and DPS plots for ࢌሺ࢏ࡼࢊ, ૙ሻࡼ ൌ ሺࡼ/࢏ࡼࢊ૙ሻ࢔ 
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Figure 16.  Example FFP and DPS plots for	ࢌሺ࢏ࡼࢊ, ૙ሻࡼ ൌ ሾ૚ ሺ૚ െ ࢏ࡼࢊ ⁄⁄૙ࡼ ሻሿ࢔ െ ૚  

 

 

Figure 17.  Example FFP and DPS plots for	ࢌሺ࢏ࡼࢊ, ૙ሻࡼ ൌ ૚ െ ሾ૚ ሺ૚ ൅ ࢏ࡼࢊ ⁄⁄૙ࡼ ሻሿ࢔  

 

 

Figure 18. Example FFP and DPS plots for ࢌሺ࢏ࡼࢊ, ૙ሻࡼ ൌ ሺ૚ ൅ ࢏ࡼࢊ ⁄૙ࡼ ሻ࢔ െ ૚ 
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Figure 19. Example FFP and DPS plots for ࢌሺ࢏ࡼࢊ, ૙ሻࡼ ൌ ૚ െ ሺ૚ െ ࢏ࡼࢊ ⁄૙ࡼ ሻ࢔ 

 

 

Figure 20. Example FFP and DPS plots for ࢌሺ࢏ࡼࢊ, ૙ሻࡼ ൌ ࢏ࡼࢊሺܘܠ܍ ⁄૙ࡼ ሻ െ ૚ 

 

 

Figure 21. Example FFP and DPS plots for ࢌሺ࢏ࡼࢊ, ૙ሻࡼ ൌ ࢏ࡼࢊሺܘܠ܍ ⁄૙ࡼ ሻ െ ૚ and ࢌሺ࢏ࡼࢊ, ૙ሻࡼ ൌ ૚ െ ࢏ࡼࢊሺെ	ܘܠ܍ ⁄૙ࡼ ሻ 
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Modeling CBD Signatures to FFS Data 

A general procedure has been developed to use the seven sets 
of degradation functions to transform CBD signatures into 
DPS-based FFS data to be input to prediction algorithms (see 
Figure 22). 

 

Figure 22. Procedure for transforming CBD signatures 

Functional Failure Signature (FFS) 

To create a set of DPS points,  use a generalized form of Eq. 
(11) and a set of models from column 1 and column 2 of 
Table 1 : 

{DPS} = {ሺ݀ ௜ܲ/ ଴ܲሻሽ and ݀ ௜ܲ/ ଴ܲ 	ൌ ݂ሺܨܨ ௜ܲሻ 

Then select/define a threshold FFP value that defines 
functional failure: a level at which the component, assembly, 
and/or system is no longer operating within specifications, 

ிி௉ܮܨ ൌ ܨܨ ௜ܲ = threshold for functional failure 

Then transform ܮܨிி௉ into ܮܨ஽௉ௌ using a generalized form 
of Eq. (13) and a model from column 3 of Table 2: 

஽௉ௌܮܨ ൌ ݄ሺܮܨிி௉ሻ 

This transform is necessary to ensure that regardless of 
whether an FFS is based on an FFP signature or on a DPS, 
functional failure occurs at same point in time. For example, 
the plots in Figure 23 illustrate that regardless of whether the 
FFP results from a power or exponential function of 
degradation, functional failure occurs, as expected, at the 
same point in time. 

A next step is to use Eq. (12) and ܮܨ஽௉ௌ to transform a DPS 
signature into an FFS signature: 

 ஽௉ௌሻ100ܮܨ/ሽܵܲܦ}) = {஽௉ௌܵܨܨ}

Figure 24 shows the FFS plots for the two DPS and two FFP 
plots in Figure 23. Notable observations are the following: 
(1) the DPS-based FFS plots are more linear compared to the 
FFP-based FSS plots; (2) all four FSS plots have the same 
units of measure (percent in amplitude and days in time); (3) 
functional failure occurs when an FSS is at 100 percent; and 
(4) the two FFP-based FFS plots are similar, but not exactly 
the same. 

 
Figure 23. Plots for	ܮܨிி௉ (selected) and	ܮܨ஽௉ௌ (calculated): functional failure occurs at same point in time  
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Figure 24. FSS plots for	ܮܨிி௉ (selected) and	ܮܨ஽௉ௌ (calculated): functional failure occurs at same point in time  
 
Data Point by Data Point Transformation 

An important note: all of the data transforms are successively 
performed one data point at time: there is no prior knowledge 
of any future data point at any step in the  transformation of 
CBD to FFP to DPS to FSS: 

For a first data point  (i = 1): (1) transform	ܦܤܥ௜ to ܨܨ ௜ܲ; 
then (2) transform ܨܨ ௜ܲ to ܲܦ ௜ܵ; then (3) transform	ܲܦ ௜ܵ to 
ܵܨ ௜ܵ; then (4) input ܵܨ ௜ܵ	to your prediction algorithm.  
Repeat for the second and all subsequent data points (i=2, 3, 
….).  

5. CONDITIONING AND EMPIRICAL APPROACH 

To improve results, apply a data smoothing technique to the 
FFP signature and/or adjust the noise margin. For example, 
Figure 7 indicates a smaller noise margin of 0.6 instead of 0.7 
could be used, resulting in the plot shown in Figure 25. 
Because regulation with feedback results in non-ideal square-
root function (n=1/2), it is suitable to use n=1 instead of n=1/2 
to transform the smoothed FFP signature data into an 
improved DPS signature data as seen in Figure 26.  

 

Figure 25. Conditioned FFP – contrast with Figure 7 

 

Figure 26. Conditioned DPS – contrast with Figure 9 

Figure 27 and Figure 28 illustrate the improvements that are 
achievable by conditioning the FFP signature and by 
empirically changing the power when transforming the FFP 
signature.  

 

Figure 27. Conditioned FFS – contrast with Figure 13 
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Figure 28. Non-linearity for conditioned FFS – contrast 
with Figure 14 

Most importantly, the improved DPS results in an  FFS with 
less non-linearity: the maximum non-linearity has been 
reduced to 8.0 percent compared to the original 16.9 for an 
FFS based on the FFP and the 13.1 for an FFS based on the 
unconditioned DPS (refer back to Figure 14). Even when a 
prediction algorithm does not employ sophisticated 
prediction methods and techniques, the small non-linearity in 
the conditioned FFS data is likely to produce accurate 
prognostic information. 

6. SUMMARY 

In this paper an exemplary prognostic system is reviewed: a 
set of core frameworks, classical and CBD approaches to 
handle data, and control and data flow. Then a concept of 
signatures is introduced with a set of examples to illustrate 
that CBD contains features that can be extracted as FD to 
create an FFP signature, which can be further transformed 
into DPS data and then into FFS data – one data point at time. 
An ideal FFS, as a transfer curve for producing prognostic 
information, is a straight line progressing from 0 percent or 
less (no degradation) to 100 percent or higher (functionally 
failed). Next a method is introduced to evaluate non-linearity 
of FSS data (FNL): that method is based one used for 
evaluating the nonlinearity of data converters. 

A procedure for transforming CBD signatures into FFS data 
is introduced: included is a set model functions developed for 
that purpose. Plots of the model functions showed that for 
ideal CBD (FFP) data, the resulting DPS and FSS curves are 
linear. 

The paper is concluded  by using the original example data to 
illustrate how data conditioning and evaluating experimental 
data leads to a empirical approach for transforming 
signatures: choose a set of model functions to transform 
signatures, then  use a value for power or exponent that is 
suitable for the application and which results in a more linear 
FFS. 

APPENDICES  

A.  DERIVATION OF A DPS MODEL 

Beginning with the general model for a point in an FFP 
signature, Eq. (7), 

ܨܨ ௜ܲ ൌ ሺܦܨ௜	 െ ଴ሻܦܨ ⁄଴ܦܨ  

to which we apply a model for an FD of interest, such as that 
for resonant frequency of a damped-ringing response of an 
SMPS: Eq. (5), 

௜ܦܨ ൌ ଴ܥሺඥ	଴ܦܨ	 ሺܥ଴ െ Δܥ௜⁄ ሻሻ 

Let ଴ܲ ൌ ݀	and	଴ܥ ௜ܲ ൌ ∆C, then we get Eq. (10) 

௜ܦܨ ൌ ሺඥ	଴ܦܨ	 ଴ܲ ሺ ଴ܲ െ ݀ ௜ܲ⁄ ሻሻ 

Which leads to 

଴ܲ ሺ ଴ܲ െ ݀ ௜ܲ⁄ ሻ ൌ ሺܦܨ௜ ⁄଴ܦܨ ሻଶ 

଴ܲ ሺܦܨ௜ ⁄଴ܦܨ ሻଶ⁄ ൌ ଴ܲ െ ݀ ௜ܲ 

and re-arranging terms,  

଴ܲሺܦܨ଴ሻଶ ሺܦܨ௜ሻଶ⁄ ൌ ଴ܲ െ ݀ ௜ܲ 

ሺܦܨ଴ ⁄୧ܦܨ ሻଶ ൌ 	 ሺ ଴ܲ െ ݀ ௜ܲሻ ଴ܲ ൌ 1 െ ݀ ௜ܲ ଴ܲ⁄⁄  

we get Eq. (11) 

ܲܦ ௜ܵ ൌ ݀ ௜ܲ ଴ܲ⁄ ൌ 1 െ ሺܦܨ଴	 ⁄୧ܦܨ ሻଶ 

B.  DERIVATION OF A DPS FAILURE LEVEL 

Although any DPS value can be chosen as a failure level, 
such a failure level should be based on an FFP-based failure 
level:	

ிி௉ܮܨ ൌ ܨܨ ௜ܲ 

then from Eq. (7) for failure at defined value of ܦܨ௜	and 
ignoring the noise margin, 

ிி௉ܮܨ ൌ ሺܦܨ௜	 െ ଴ሻܦܨ ⁄଴ܦܨ  

so that 

	௜ܦܨ െ ଴ܦܨ ൌ  ிி௉ܮܨ଴ܦܨ

	௜ܦܨ ൌ ிி௉ܮܨ଴ܦܨ ൅  ଴ܦܨ

଴ܦܨ ⁄୧ܦܨ ൌ 	1 ሺܮܨிி௉ ൅ 1ሻ⁄  

and from Eq. (11), 

஽௉ௌܮܨ ൌ 1 െ ሺ1 ሺ	1 ൅ ⁄ிி௉ሻܮܨ ሻଶ    (13) 

C.  FFS NONLINEARITY CALCULATIONS 

Calculating FSS nonlinearity is a post-processing type of 
operation using FFS data because it is necessary to first 
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calculate the total time between the point in time of the onset 
of degradation and the point in time when functional failure 
occurs: 

ܨܶܶ ൌ 	 ி஺ூ௅௎ோாݐ െ  ைேௌா்ݐ

then for each point in the set {FFSi}, we create an ideal point,  

ܨܨ_ܮܣܧܦܫ ௜ܵ ൌ 	100 ሺݐ௜ െ ைேௌா்ሻݐ ⁄ܨܨܶ  

and calculate point-by-point nonlinearity, 

௜ܮܰܨ ൌ ܨܨ ௜ܵ െ ܨܨ_ܮܣܧܦܫ ௜ܵ 

and calculate total nonlinearity, 

ாܮܰܨ ൌ 	max	ሺabsሺሼܮܰܨ௜ሽሻሻ 

where ‘max’ is a maximum function and ‘abs’ is an absolute-
value function. Figure 14 is an example of FNL plots. 
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