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Abstract—Reliability modeling and troubleshooting reasoning 

involving complex component interactions in complex systems are 
an active research topic and a critical challenge to be overcome in 
decision support. In this paper, we propose an innovative concept 
of decision support methodology for system failure diagnosis and 
prognosis in complex systems. Advanced causal structure 
incorporating domain and engineering knowledge and a new 
Bayesian network (BN) representation of system structure and 
component interaction are proposed. Based on the BN 
representation, a Bayesian framework is developed to analyze and 
fuse the multi-source information from different hierarchical 
levels of a system.  This capability supports higher fidelity 
modeling and assessing the reliability of the components, 
subsystems and the system as a whole. The feasibility of our 
advanced causal structure approach has been proven with 
implementation using test data acquired from electromechanical 
actuator (EMA) systems. A case study is successfully conducted to 
demonstrate the effectiveness of the proposed methodology. The 
proposed decision support process in integrated system health 
management (ISHM) will enable enhancements in flight safety 
and condition-based maintenance (CBM) by increasing 
availability and mission effectiveness while reducing maintenance 
costs. 
 

Index Terms— Failure and fault detection/isolation, Reliability 
analysis, Bayesian network, Decision support, Information fusion, 
Causal analysis, Troubleshooting 
 

I. INTRODUCTION 

IGOROUS routine inspection and maintenance for today’s 
complex systems (e.g., fixed and rotary wing aircraft) are 

performed to ensure the health of the plane’s numerous 
mechanical and electronic systems. While vital, this constant 
process has seen significant cost increases over the past 10 
years as various cost components such as labor, parts, and 
aircraft downtime rise in conjunction with the increasing 
complexity and aging of these systems. These trends have 
compelled the development of an effective troubleshooting and 

 
  
Byoung Uk Kim is with U.S. Air Force Research Laboratory, WPAFB, OH 
45433 USA (corresponding author to provide phone: 937-713-7233; e-mail: 
BYOUNG.KIM.CTR@WPAFB.AF.MIL)  
Douglas Goodman is with Ridgetop Group, Inc., Tucson, AZ 85741 USA 
Jian Liu and Mingyang Li are with Department of Systems and Industrial 

Engineering at the University of Arizona, Tucson, AZ 85721 USA. 
Jing Li is with Department of Systems and Industrial Engineering at Arizona 

State University, Tempe, AZ 85287 USA. 

decision support system for complex system faults/failures. It 
ultimately provides substantial benefits to the maintainer of 
complex systems and maintenance facilities.  

Complex engineering systems are characterized by a 
multilevel hierarchical physical structure that embraces a large 
number of components interconnecting and interacting with 
each other, jointly contributing to the functionality of a 
subsystem, and a large number of such subsystems 
interconnecting and interacting with each other jointly 
contributing to the functionality of the system. This 
characterizes a hierarchical system with three levels, i.e., the 
component, subsystem, and system levels, whereas the general 
hierarchical system under investigation in this paper can 
include any number of levels. 

As multilevel hierarchical systems, including but not limited 
to, a ship hull assembly [3], a bridge [4], and an anti-aircraft 
missile system [5] are usually deployed in environments 
associated with enormous financial investment, or high-level 
national security, failures of such systems in use are 
devastating. This makes system-level diagnostic and prognostic 
decision support of multilevel hierarchical systems extremely 
important. The challenges, on the other hand, are also 
enormous: First, there are usually very few or no data available 
at the higher-level subsystems or systems, since pre-launch 
whole-system reliability testing may be infeasible or too 
expensive. Second, although data and prior knowledge may be 
available for the subsystems and components, how to analyze 
and fuse all the information to predict the stability and 
reliability of the system remains a challenging problem. 
Especially due to globalization, production of different 
components may be carried out at different industrial sites and 
used for assemblies of various subsystems. As a result, it is 
possible that the data and knowledge about the reliability of the 
subsystems and the components contain conflicting 
information. For example, the reliability of a subsystem can be 
assessed using its test data. It can also be predicted based on the 
test data of the components of this subsystem and the physical 
interconnecting relationship of the components (e.g., serial or 
parallel configuration). As subsystem assembly and component 
production may be carried out in different locations, it is very 
likely that the reliability assessments/predictions by the two 
methods mentioned above will give different results. Third, due 
to the possibly large number of components a subsystem 
consists of and their complex interacting relationships, 
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especially considering that the components work under the 
same environment when the system is in use, failures of the 
components are usually interdependent. For example, Langseth 
and Portinale [30] studied the reliability of a gas turbine 
controller and found that when the “power supply” works 
abnormally, it induces anomalous behaviors in the components 
“supply equipment of the main controller” and “back-up unit.” 
This is because the malfunction of “power supply” causes other 
components to work more intensively, thus expediting aging, 
degradation, and eventual failures. Failure interdependency 
among components and subsystems adds to the complexity of 
the reliability modeling of the system. Based on these reasons 
and to tackle the aforementioned challenges, in this paper, we 
propose an innovative concept for a new decision support 
methodology for system failure diagnosis and prognosis in 
complex systems. 

A. Related Works 

As summarized in [37], existing failure diagnosis and 
prognosis methods include case-based methods [38], 
rule-based methods [39], artificial intelligence-based methods 
[16] and model-based methods [13], [36]. As compared to other 
methods, model-based methods represent system structure with 
graph-based models such as Bayesian network to enable the 
precise quantification of failure interaction relationship among 
system elements. The proposed work essentially uses a 
model-based method and, compared to existing work, it 
intersects with three areas in the literature.  

The first area is constructing advanced causal structure by 
incorporating domain and engineering knowledge. For each 
component/subsystem, the knowledge should cover 1) working 
physics and working conditions, 2) health status indicators, 3) 
functionalities and performance indicators, 4) potential failure 
modes and effects, 5) corresponding causes of the failure 
modes, and 6) corresponding mitigation methods of the failure 
modes. There is existing work on constructing causal structure 
with Bayesian networks (BNs) [7], [8], [9], [15]. However, the 
existing work does not consider domain and engineering 
knowledge to provide capability and flexibility in handling a 
complex system that has too little reliability test data.  

The second area is reliability modeling of multilevel 
systems. Existing work along this line has studied systems with 
various connection structures with binomial test data [10] and 
exponential lifetime data [11]. However, the existing modeling 
methodologies assume that the failures of 
components/subsystems are independent.  

The third area is BNs in reliability modeling. BNs provide an 
effective model for characterizing the dependent and 
independent relationships among the variables in a domain. In 
reliability modeling, BNs have been extensively used to model 
the interacting relationships among the components of a system 
[7]. Other related domains that utilize BNs include software 
reliability [12], fault-finding systems [6], [35], and 
maintenance modeling [29]. However, the existing work noted 
above does not consider systems with multilevel hierarchical 
structures. Recently, BN formalism from FT [14] and BN 
hierarchical fault diagnosis model [36] applicable in the 

presence of a large number of components and subsystems 
were presented. They provide hierarchical decomposition 
framework with component dependencies and demonstrate the 
effectiveness by using synthetic data in their application. 
However, the method available in their paper is not applicable 
to our problem. One of the main differences in developing 
advanced causal structure is that we incorporate domain and 
engineering knowledge. 

The work for constructing advanced causal structure is based 
on our preliminary work [1] with a constraint-based learning 
method to build causal analysis with BNs. We extend this work 
and offer advanced causal structure. In addition, we propose a 
method for reliability modeling of multilevel hierarchical 
systems with interdependent subsystems/components by fusing 
the data and prior knowledge collected at all levels of the 
system. Specifically, we propose the use of a BN to model the 
failure interdependency in the system. Furthermore, we 
develop a Bayesian framework to analyze and fuse the 
multi-source information regarding the reliability of a 
subsystem (or the system), including the test data and prior 
knowledge about this subsystem as well as the information 
propagating from the lower level.   

The remainder of this paper is organized as follows: Section 
II explains the requirement of decision support reasoning with 
interconnected submodules. In section III, we describe the 
development of multilevel methodology for reliability 
modeling and troubleshooting reasoning of hierarchical 
systems. Section IV explains multilevel information analysis 
and fusion development. Implementation and the case study to 
demonstrate the effectiveness of the proposed methods are 
presented in section V. Integrated system health management 
(ISHM) regarding diagnosis support is discussed in section VI. 
Section VII concludes the paper.  

II. REQUIREMENT OF DECISION SUPPORT REASONING 

Our reliability modeling and troubleshooting reasoning 
integrates the engineering and domain knowledge of different 
levels of an engineering system with the statistical analysis 
results of the data collected to identify and/or predict the 
failures of subsystems and components, and evaluate their 
potential effects. The reasoning is basically divided into the 
following interconnected submodules.  

A. Anomaly Detection 

This submodule detects the failure of components, 
subsystems or even systems, and indicates that “something 
failed” in the system. Statistical process control concepts and 
charting techniques are employed in this submodule to monitor 
the system performance based on the performance 
measurement data collection from the component, subsystem, 
and system level. One byproduct of the anomaly detection 
model is the normal performance measurement of a statistically 
stable component, subsystem, and even system. Our 
data-driven approach for anomaly detection can be found in 
detail in [2]. 
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a beta prior in binomial data, when the true prior is not beta, is 
negligible in many practical applications [23]. Let r follow a 
beta prior distribution, i.e., r~beta(s0+1, n0-s0+1). The 
parameters of this distribution are denoted by s0+1 and n0-s0+1 
for the ease of interpretation, which is that, when s0 and n0 are 
integers, s0+1 and n0-s0+1 are the numbers of prior survivors 
and failures, respectively. And their sum, n0+2, is the total 
number of prior tests [25]. With this conjugate prior 
distribution, the posterior distribution of ݎ is also beta, i.e., 

( )0 0 0~ 1, 1 .r beta s s n n s s+ + + − − +  (1) 

B. Induced Prior Propagation 

Note that what has been described above is how to apply 
standard Bayesian inference for fusing the test data and prior 
knowledge regarding Xl,j. Full information fusion needs to 
incorporate the information propagated from the components of 
Xl,j. In this paper, we consider the propagated effects as another 
“prior” knowledge for Xl,j, achieved from investigating the 
reliability of its composing subsystems or components. To 
distinguish, this prior is called the “induced prior” and the prior 
discussed previously is called the “native prior.” We will 
discuss how to transform the propagated reliability information 
into the induced prior for Xl,j. Considering that the element Xl,j 
consists of pl,j lower-level elements, {Xl-1,1, …, 

,1, l jl pX − }. Let 

PA(Xl,j) denote the parents of the element Xl,j, i.e., ۯ۾൫ ܺ,൯ ⊆ቄ ܺିଵ,, … , ܺିଵ,,ೕቅ . According to the Law of Total 

Probability, the reliability of Xl,j is 

( ) ( )( )( , ), ,0 l j h jj l
h

lP X P X hα= = = PA            (2) 

where where ( )( )( , ), , ,0 |l j h l j l jP X X hα ≡ = =PA , and h is 

used to index each combination of values for the parents Xl,j. 
For example, consider the subsystem Xl,1 in Fig. 2, which has 
two parents {Xl-1,1 , Xl-1,2}, and h = {{0,0}, {0,1}, {1,0}, {1,1}}. 
In this paper, we assume α(l,j),h to be constants known from 
design or statistical analysis. For example, in special cases of a 
serial or parallel system, α(l,j),h can be 0 or 1. Furthermore, 
according to the Decomposition Theory of BN, P(PA(Xl,j)) can 
be decomposed into a product of the probability of each 
variable in PA(Xl,j) given its parents. Specifically, let PAi(Xl,j) 
denote the ith parent of Xl,j, i=1,…, pl,j, i.e., PAi(Xl,j) ∈ PA(Xl,j). 
Then, 

( )( )
( ) ( )( )( )

,

, ,           ,i

l j

l j l j
i

j

P X h

P PA X PA Xκ

= =

= =∏

P A

P A k

 (3) 

where κ is the value of PAi(Xl,j) in h, and k is a vector of the 
values of PA(PAi(Xl,j)) in h. Eq. (3) indicates that P(PA(Xl,j)=h) 
is a function of the (conditional) reliability of each parent for 
Xl,j. For example, in Fig. 2, P(PA(Xl,1)={0,1}) = P(Xl-1,1=0, 
Xl-1,2=1) = P(Xl-1,1=0){1-P(Xl-1,2=0| Xl-1,1=0)}, where P(Xl-1,1=0) 
and P(Xl-1,2=0| Xl-1,1=0) are the reliability and conditional 
reliability of Xl-1,1 and Xl-1,2, respectively. 

Therefore, as long as the (conditional) reliability of each 
parent for Xl,j is known, the reliability of Xl,j in (2) can be fully 

specified. Considering the conditional reliability of the ith 
parent of Xl,j, P(PAi(Xl,j)=0|PA(PAi(Xl,j)=k)). If PAi(Xl,j) is a 
lowest-level element in a hierarchical system, only test data and 
prior knowledge are available and there is no propagated 
reliability information needing to be fused. The available two 
sources of information can be fused with standard Bayesian 
inference. Specifically, let s(i,l,j),k be the number of survivors out 
of n(i,l,j),k independent tests on PAi(Xl,j) while keeping its parents 
at the status specified by k, i.e., PA(PAi(Xl,j)=k). We use a beta 
prior for the conditional reliability of PAi(Xl,j), i.e., 

( ) ( )( )( ), ,

0 0 0
( , , ), ( , , ), ( , , ),

0 ~

    ( 1, - 1),

i l j l j

i l j i

i

l j i l j

P PA X PA X

beta s n s

= =

+ +k k k

PA k
      (4) 

where 0
( , , ), 1i l js +k  and 0 0

( , , ), ( , , ),- 1i l j i l jn s +k k  are integers and 

can be respectively interpreted as the numbers of prior 
survivors and failures in the hypothetical prior tests on PAi(Xl,j) 
when PA(PAi(Xl,j)=k). Then, the posterior distribution for the 
conditional reliability of PAi(Xl,j) is 

( ) ( )( )( ), ,

0
( , , ), ( , , ),

0 0
( , , ), ( , , ), ( , , ), ( , , ),

0 ~

      ( 1,

                        1).

i l j i l j

i l j i l j

i l j i l j i l j i l j

P PA X PA X

beta s s

n n s s

= =

+ +

+ − − +
k k

k k k k

PA k

 (5) 

Note that if a parent of Xl,j does not have any parent in the 
BN, its unconditional reliability can be specified in a similar 
way. After the posterior distribution for the (conditional) 
reliability of each parent of Xl,j is obtained, these posterior 
distributions can be plugged into (3), which is further plugged 
into (2) to compute the reliability of Xl,j. The reliability 
computed in this way integrates the information propagated 
from the lower-level elements and thus is the afore-defined 
induced prior for Xl,j. 

Due to the complex functional form of the induced prior, it is 
very likely that this prior distribution is non-parametric. For 
computational simplicity, we adapt the approach by [26] to our 
problem by setting and approximating the exact induced prior 
with a beta distribution having the same first two moments. Use 
of the approximation is also for the convenience of combining 
the induced prior with the native beta prior distribution. 
Specifically, let the approximate beta distribution be 
P(Xl,j=0)~beta(b, c), where the parameters b and c are derived 
as described in the Appendix. 

C. Native and Induced Priors Combination 

Furthermore, the induced beta(b, c) and native beta(s0+1, s0 
-s0+1) priors can be combined to generate a single beta prior for 
element Xl,j. In this paper, we follow the natural conjugates for 
generating the combined prior [23], i.e., beta(w1b+w2(s

0+1), 
w1c+w2(n

0-s0+1)), where w1 and w2 are the weighting 
coefficients (w1 + w2 =1) assigned to the induced and native 
priors, respectively. For example, if the production of the 
components and the assembly of the components into the 
subsystem are carried out in two different sites, it may be 
appropriate to consider the induced and native prior 
information to be obtained independently. Dependency may 
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duration of primary current flow, and hence the output voltage, 
and they comprise the synchronous forward and catch rectifiers 
in the secondary side. At every switching instance, the 
MOSFET encounters a rapid change of voltage across its 
drain-source terminals (dv/dt) as well as a spike of voltage 
kickback, due to the inductance of the circuit. At high values of 
dv/dt, the parasitic bipolar in the MOSFET can turn ON, 
causing uncontrolled operation. At higher voltages, the 
associated electric field is also very high, causing avalanche 
injection current and increasing the probability of turning the 
bipolar ON. This shoot-through current is a bypass current 
across the MOSFET through the gate capacitances. It results in 
giving rise to a current in the capacitance through the base 
resistance. Eventually, capacitor failures in the motor supply 
lead to an increased voltage ripple and reduction in current 
output.  MOSFET failures lead to a complete loss of current 
and voltage. The BN representation of this investigated 
four-level system is shown in Fig. 4. The whole system, X4,1, is 
composed of two subsystems, X3,1 and X3,2, which consist of 
multiple components, X2,j, j = 1,…,4 and X1,j, j=1,…,3. The 
conditional probabilities corresponding to the BN are 
summarized in Table I. For instance, the probability of X31=0 is 
1 when X21=0 and X22=0. 

There are three types of information fused in this analysis. 
Table II summarizes the availabilities of components, 
subsystems and the overall system in terms of beta-prior 
distribution parameters. This type of prior information may be 
obtained from a compendium of various data sources for 
identical or similar components/subsystems under a similar 
utility environment. To be more specific, combined data 
sources provided include domain knowledge and judgments of 
expertise, test data of similar types of system elements, and 
historical studies on the same type of system elements. It is 
noticed that for prior parameters specification [10], the 
practitioners are encouraged to follow some existing work such 
as technical reports and IEEE standards. Because of the failure 
interdependency of the availability between components X21 
and X22, and that among X11 , X12 and X13, the conditional beta 
prior distributions of X21 and X12 are provided. 

 
Fig. 4. BN representation of the case study system 

 
 

TABLE I.  CONDITIONAL PROBABILITY TABLE  

 
TABLE II.  BETA-PRIOR PARAMETERS  

 

For component X23, components X11, X12 and X13 are serially 
connected. Based on the given information about the 
components’ prior distribution parameters, binomial test results 
and conditional probability in Tables I-III, the induced prior 
distribution for the availability of X23 is a beta(962, 135) 
distribution, according to Eq. (3). Similarly, the induced priors 
for the availability of subsystems X31 and X32 are beta(934, 95) 
and beta(422.6,71.6) distributions, respectively. The native 
prior distribution parameters listed in Table II will be used to 
calculate the combined priors of X23, X31 and X32. It is 
reasonable to assume that the native prior distribution 
parameter may be estimated based on prior data listed in Table 
II. Thus, the sum of the weighting coefficients w1 and w2 are set 
to be 1. In this study, we assign 0.75 and 0.25 to the induced 
prior and the native prior, respectively, i.e., w1 = 0.75 and w2 = 
0.25. This indicates that more weight will be placed on the 
information aggregated from a lower level of the subsystem. As 
a result, the combined priors for X23, X31 and X32 are 
beta(414.875, 44.775), beta(720.775, 72.6) and beta(150.35, 
21.3), respectively. Posteriors for X23, X31 and X32 are obtained 
through Eq. (1) by integrating the combined priors and 
binomial test data. These posterior beta distributions are 
graphically shown as solid curves in Fig. 5, and their 
corresponding quantiles are summarized in Table IV. 

Component  0
( , , ),i l js k  0

( , , ),i l jn k  

X12|X11=0, X13=0   803.2  819.3  
X12|X11=1, X13=0   
X12|X11=0, X13=1   
X12|X11=1, X13=1 

X11 
X13  

642.5  
548.3 
581 

793.2 
641.2 

688  
589.3 
723.5 
823.1 
664.3 

Component  0
( , , ),i l js k  0

( , , ),i l jn k  

X21|X22=0  
X21|X22=1 

1121.4  
878 

1164.5 
1013.6 

X22  512.5  537.2  
Component  0

( , , ),i l js k  0
( , , ),i l jn k  

X23 

X24 
231.5 
189.3 

245.2 
205.1 

Subsystem 0
( , , ),i l js k  0

( , , ),i l jn k  

X31 80.1  84.3
X32  58.6  62.1  

System 0
( , , ),i l js k  0

( , , ),i l jn k  

X41 43.1  46.2  

P(X23 = 0) X12   = 0   X12 = 1 
X11 = 0, X13 = 0 1   0  
X11 = 1, X13 = 0 
X11 = 0, X13 = 1 
X11 = 1, X13 = 1 

0   
0   
0     

0  
0 
0 

P(X31 = 0) X2 1  = 0   X21 = 1 
X22 = 0 
X22 = 1 

1   
0   

0  
0 

P(X32)= 0 X2 3  = 0     X23 = 1 
X24 = 0 1   0  
X24 = 1  0   0  

P(X41 = 0) X3 1   = 0    X31 = 1 
X32 = 0 1   1  
X32 = 1  1   0  
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The system is composed of two subsystems connected in 
parallel. The beta posterior parameters of subsystems are now 
treated as the “component” prior parameters. With the same 
aggregation method, the induced beta prior distribution for X41 
is beta(2116.2, 19.8). By assigning the same weighting 
coefficients, i.e., w1=0.75 and w2=0.25, the combined prior 
distribution for S is beta(562.125, 8.025). Posterior is obtained 
through Eq. (1) by integrating the combined prior and its 
corresponding binomial test data. 

TABLE III.  BINOMIAL TEST RESULTS 

 

The system posterior is graphically shown in Fig. 5 and listed 
in Table IV, together with its corresponding quantiles. It is 
noted that in calculating the induced prior parameters for X21, 
X22 and X31, the Kolmogorov-Smirnov (KS) [33] p-values are 
all larger than 0.05, indicating that the approximation is 
acceptable. Numerical values of posterior quantiles provide 
information regarding the reliabilities of the investigated 
system elements. For example, 0.97574 and 0.99203 are X41’s 
0.05 and 0.95 quantiles. They can be interpreted as based on the 
current available reliability information. The subjective belief 
of the reliability of the overall system is between [0.97574, 
0.99203] with 90% credibility. The median of 0.98535 is the 
point estimate of the overall system reliability. Maintenance 
decisions can be made according to such quantities.  

The impacts of components’ failure interdependency are also 
investigated in this case study. The BN shows that components 
X21 and X22, are not independent, and the availability of X22 has 
a positive impact on that of X21. When X22 is failed, X21 is more 
likely to fail. This can be seen from the binomial test data in 
Table III and prior parameters in Table II. The same failure 
interdependency exists among X11, X12 and X13. If the method in 

[27] is adopted and the failure interdependencies between 
components are neglected, the predicted mean of availability of 
serial subsystem X21 and X22 will be higher than their true 
values, shown as the dashed curves in Fig. 5. However, this 
does not indicate that we should neglect the interdependencies, 
since if the interdependent relationship is strong, the 
discrepancy will be obviously large. Moreover, the value of the 
proposed methodology is to quantify the reliability of the 
system, which includes interdependent 
subsystems/components. Such interdependencies are often 
neglected in much existing research by assuming independent 
subsystems/components. 

One concern related to the problem scale for large systems is 
the quality of the prior approximation, i.e., the approximation 
of the induced priors. To verify the approximation results, KS 
test is applied to test whether the approximation quality is 
acceptable. Table IV lists the p-values of K-S tests. Since all 
p-values are larger than significance level of 0.05, they imply 
that the approximation quality is satisfactory. 

VI. DISCUSSION ON APPLICABILITY 

Expert troubleshooting and decision support systems are 
needed to achieve significant savings, which is accomplished 
by learning what diagnostic actions lead to correct outcomes 
and minimizing wasted efforts while achieving reduced 
maintenance costs. According to an analysis [34] by NAVAIR, 
it is possible to achieve 20% maintenance cost savings on 
deployed electronic systems. The presented approach will be 
used to develop an expert troubleshooting tool as a part of an 
integrated system health management (ISHM) system for 
complex mechanical/electrical system faults/failures. It will 
ultimately provide substantial benefits to the 
maintainer/operator of complex systems and maintenance 
facilities.  

The improved reliability-based decision support 
methodology presented in this paper provides a foundation for 
an effective troubleshooting and decision support system to the 
maintainer/operator of complex systems and maintenance 
facilities. Integration of the CBN into condition-based 
maintenance (CBM) systems will enable maintainers to 
interpret complex interactions among components and 
subsystems embedded within the system, facilitating root cause 
analysis and reducing maintenance costs. As an illustration of 
how this can be done, consider integration with a ground-based 
application that provides an easy-to-understand fusion of 
parameters and required maintenance, so maintenance 
personnel can have an extra angle of insight into the systems for 
which they are responsible. 

TABLE IV.  RESULTS OF THE AVAILABILITY ANALYSIS FOR X23, X31, X32, AND X41 

Component / Subsystem 
/ System 

Induced Prior KS test  
p-value 

Beta Posterior Posterior Quantiles 
0.05 0.5 0.95 

X23 β(962,135) 0.759 β(476.575, 46.775) 0.88927 0.91115 0.93019 
X31 β(934, 95) 0.954 β(773.775, 75.6) 0.89440 0.91132 0.92649 
X32 β(422.6, 71.6) 0.859 β(198.35,23.3) 0.85915 0.89607 0.92655 
X41 β(2116.2, 19.8) 0.969 β(585.125,9.025) 0.97574 0.98535 0.99203 

Component  s(i,l,j),k  n(i,l,j),k  
X12|X11=0, X13=0   252  265  
X12|X11=1, X13=0   
X12|X11=0, X13=1   
X12|X11=1, X13=1 

X11 
X13  

230 
234 
205 
241 
201 

265   
265  
265  
257 
223 

Component  s(i,l,j),k  n(i,l,j),k  
X21|X22=0  
X21|X22=1 

149 
135 

160 
160 

X22  161  170  
Component  s(i,l,j),k  n(i,l,j),k  

X23 

X24 
62 

141 
64 

146 
Subsystem s(i,l,j),k  n(i,l,j),k  

X31 53  3  
X32  48  2  

System s(i,l,j),k  n(i,l,j),k  
X41 23  24  
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