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Abstract—Reliability modeling and troubleshooting reasoning
involving complex component interactionsin complex systemsare
an activeresearch topic and a critical challenge to be overcomein
decision support. In this paper, we propose an innovative concept
of decision support methodology for system failure diagnosis and
prognosis in complex systems. Advanced causal structure
incorporating domain and engineering knowledge and a new
Bayesian network (BN) representation of system structure and
component interaction are proposed. Based on the BN
representation, a Bayesian framework isdeveloped to analyze and
fuse the multi-source information from different hierarchical
levels of a system. This capability supports higher fidelity
modeling and assessing the reliability of the components,
subsystems and the system as a whole. The feasibility of our
advanced causal structure approach has been proven with
implementation using test data acquired from electromechanical
actuator (EMA) systems. A case study is successfully conducted to
demonstrate the effectiveness of the proposed methodology. The
proposed decision support process in integrated system health
management (ISHM) will enable enhancements in flight safety
and condition-based maintenance (CBM) by increasing
availability and mission effectiveness while reducing maintenance
costs.

Index Terms— Failure and fault detection/isolation, Reliability
analysis, Bayesian network, Decision support, I nformation fusion,
Causal analysis, Troubleshooting

I. INTRODUCTION

RIGOROUS routine inspection and maintenance for today’s
complex systems (e.g., fixed and rotary wing aircraft) are
performed to ensure the health of the plan€'s numerous
mechanical and electronic systems. While vital, this constant
process has seen significant cost increases over the past 10
years as various cost components such as labor, parts, and
aircraft downtime rise in conjunction with the increasing
complexity and aging of these systems. These trends have
compelled the development of an effective troubleshooting and
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decision support system for complex system faults/failures. It
ultimately provides substantial benefits to the maintainer of
complex systems and maintenance facilities.

Complex engineering systems are characterized by a
multilevel hierarchical physical structure that embraces a large
number of components interconnecting and interacting with
each other, jointly contributing to the functionality of a
subsystem, and a large number of such subsystems
interconnecting and interacting with each other jointly
contributing to the functionality of the system. This
characterizes a hierarchical system with three levels, i.e., the
component, subsystem, and system levels, whereas the general
hierarchical system under investigation in this paper can
include any number of levels.

Asmultilevel hierarchical systems, including but not limited
to, a ship hull assembly [3], a bridge [4], and an anti-aircraft
missile system [5] are usually deployed in environments
associated with enormous financial investment, or high-level
national security, failures of such systems in use are
devastating. This makes system-level diagnostic and prognostic
decision support of multilevel hierarchical systems extremely
important. The challenges, on the other hand, are aso
enormous: First, there are usualy very few or no data available
at the higher-level subsystems or systems, since pre-launch
whole-system reliability testing may be infeasible or too
expensive. Second, although data and prior knowledge may be
available for the subsystems and components, how to analyze
and fuse al the information to predict the stability and
reliability of the system remains a challenging problem.
Especially due to globalization, production of different
components may be carried out at different industrial sites and
used for assemblies of various subsystems. As a result, it is
possible that the data and knowledge about the reliability of the
subsystems and the components contain conflicting
information. For example, the reliability of a subsystem can be
assessed using itstest data. It can also be predicted based on the
test data of the components of this subsystem and the physical
interconnecting relationship of the components (e.g., serial or
parallel configuration). As subsystem assembly and component
production may be carried out in different locations, it is very
likely that the reliability assessments/predictions by the two
methods mentioned above will give different results. Third, due
to the possibly large number of components a subsystem
consists of and their complex interacting relationships,



especially considering that the components work under the
same environment when the system is in use, failures of the
components are usually interdependent. For example, Langseth
and Portinale [30] studied the reliability of a gas turbine
controller and found that when the “power supply” works
abnormally, it induces anomal ous behaviors in the components
“supply equipment of the main controller” and “back-up unit.”
Thisis because the malfunction of “power supply” causes other
components to work more intensively, thus expediting aging,
degradation, and eventua failures. Failure interdependency
among components and subsystems adds to the complexity of
the reliability modeling of the system. Based on these reasons
and to tackle the aforementioned challenges, in this paper, we
propose an innovative concept for a new decision support
methodology for system failure diagnosis and prognosis in
complex systems.

A. Related Works

As summarized in [37], existing failure diagnosis and
prognosis methods include case-based methods [39],
rule-based methods [39], artificial intelligence-based methods
[16] and model-based methods[13], [36]. As compared to other
methods, model -based methods represent system structure with
graph-based models such as Bayesian network to enable the
precise quantification of failure interaction relationship among
system elements. The proposed work essentially uses a
model-based method and, compared to existing work, it
intersects with three areasin the literature.

The first area is constructing advanced causal structure by
incorporating domain and engineering knowledge. For each
component/subsystem, the knowledge should cover 1) working
physics and working conditions, 2) health status indicators, 3)
functionalities and performance indicators, 4) potential failure
modes and effects, 5) corresponding causes of the failure
modes, and 6) corresponding mitigation methods of the failure
modes. There is existing work on constructing causal structure
with Bayesian networks (BNSs) [7], [8], [9], [15]. However, the
existing work does not consider domain and engineering
knowledge to provide capability and flexibility in handling a
complex system that has too little reliability test data.

The second area is reliability modeling of multilevel
systems. Existing work along thisline has studied systems with
various connection structures with binomial test data [10] and
exponential lifetime data[11]. However, the existing modeling
methodologies assume that the failures of
components/subsystems are independent.

Thethird areais BNsin reliability modeling. BNs provide an
effective model for characterizing the dependent and
independent relationships among the variables in a domain. In
reliability modeling, BNs have been extensively used to model
the interacting rel ationships among the components of a system
[7]. Other related domains that utilize BNs include software
reliability [12], fault-finding systems [6], [35], and
maintenance modeling [29]. However, the existing work noted
above does not consider systems with multilevel hierarchical
structures. Recently, BN formalism from FT [14] and BN
hierarchical fault diagnosis model [36] applicable in the

presence of a large humber of components and subsystems
were presented. They provide hierarchica decomposition
framework with component dependencies and demonstrate the
effectiveness by using synthetic data in their application.
However, the method available in their paper is not applicable
to our problem. One of the main differences in developing
advanced causal structure is that we incorporate domain and
engineering knowledge.

Thework for constructing advanced causal structure is based
on our preliminary work [1] with a constraint-based learning
method to build causal analysis with BNs. We extend this work
and offer advanced causal structure. In addition, we propose a
method for reliability modeling of multilevel hierarchical
systems with interdependent subsystems/components by fusing
the data and prior knowledge collected at al levels of the
system. Specifically, we propose the use of a BN to model the
failure interdependency in the system. Furthermore, we
develop a Bayesian framework to analyze and fuse the
multi-source information regarding the reliability of a
subsystem (or the system), including the test data and prior
knowledge about this subsystem as well as the information
propagating from the lower level.

The remainder of this paper is organized as follows: Section
Il explains the requirement of decision support reasoning with
interconnected submodules. In section Il1I, we describe the
development of multilevel methodology for reliability
modeling and troubleshooting reasoning of hierarchical
systems. Section 1V explains multilevel information analysis
and fusion development. Implementation and the case study to
demonstrate the effectiveness of the proposed methods are
presented in section V. Integrated system health management
(ISHM) regarding diagnosis support is discussed in section VI.
Section V11 concludes the paper.

I1.REQUIREMENT OF DECISION SUPPORT REASONING

Our reliability modeling and troubleshooting reasoning
integrates the engineering and domain knowledge of different
levels of an engineering system with the statistical analysis
results of the data collected to identify and/or predict the
failures of subsystems and components, and evaluate their
potential effects. The reasoning is basically divided into the
following interconnected submodules.

A. Anomaly Detection

This submodule detects the failure of components,
subsystems or even systems, and indicates that “something
failed” in the system. Statistical process control concepts and
charting techniques are employed in this submodul e to monitor
the system peformance based on the performance
measurement data collection from the component, subsystem,
and system level. One byproduct of the anomaly detection
model isthe normal performance measurement of a statistically
stable component, subsystem, and even system. Our
data-driven approach for anomaly detection can be found in
detal in[2].



B. Failure Diagnosis and Isolation

This submodule answers the questions of “what failed” and
“why it failed.” It locates the component(s) and subsystem(s)
that caused the system failure and identifies the root cause of
the failure by mapping the statistical patterns extracted from
multivariate data with the engineering knowledge
representation of failure physics. A mathematical model, such
as a factor analysis model and/or Bayesian network model, is
built to link the root causes of failure with the performance
measurement.

C.Failure Prognosis

This submodule answers the question “What will fail?’
Based on the norma performance measures identified in
anomaly detection and the mathematical cause-effect model
learned in failure diagnosis, the prediction of potential failure,
given current data and current status of the
component/subsystem, can be implemented. Most importantly,
the cause(s) of the predicted failure are also identified.

In this paper, we focus on implementation of the failure
diagnosis and prognosis requirement.

I1l. HIERARCHICAL SYSTEM ANALYSIS METHODOLOGY

This paper proposes multilevel methodology for reliability
modeling and troubleshooting reasoning of hierarchical
systems. Our advanced causal structure and a new BN are
developed to represent the system structures and a Bayesian
framework is employed to aggregate the lower-level
information to upper-level modeling.

A. Development of Flow Diagram with Domain Knowledge

The fault tree (FT) is a commonly used method for
quantitative risk modeling. It is one of popular methodologies
for evaluating failure occurrences in safety-critical systems
[31] in a top-down fashion. We will use the former term,
because we focus on decision support issuesin complex system
troubleshooting. The system failure is often represented by the
event at thetop. It isdecomposed into basic eventsthat describe
detailed causes and basic components’ failures. Logic gateslike
AND or OR provide the logic expressions among different
failure events. Given the probabilities of basic events and the
logic structure of the tree, the probability of system failure can
then be calculated.

The FT structure represents existing domain knowledge of
failure event relationships in the system. In order to construct
the fault tree, the rules-based knowledge (e.g., Failure Modes
and Effects Analysis (FMEA)) should be transformed into
numerical entitiesin facilitating graphical representation of the
FT. Therules-based domain knowledge isfirst transformed into
the adjacency matrix.

Fig. 1 shows an example of partial implementation of the FT
in agraphical representation. The top event refersto the failure
of the EMA overal system. OR logic gates are used to
represent faillure events relationships based on domain
knowledge. The efforts of FT development allow us to provide
advance causal structure for troubleshooting and decision
support with causal analysis, and will be explained more in the

implementation process.
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Fig. 1. An example of FT graphical representation

B. Clarification of Relationships Between Flow Diagram and
Bayesian Network

Unlike the tree-based structure of FT, BNs[17] are Directed
Acyclic Graphs (DAG) for representing the joint distribution
and reasoning under uncertainty. BNs have been applied in
many areas for probabilistic reasoning [18], [19], [20], decision
making [21], [22], robust localization [32], and constructing
causal structure[7], [8], [9].

Reasoning under uncertainty refers to the capability of
representing and drawing an inference of data with uncertainty.
In practice, collected data may include noise, errors, or even
missing values. Moreover, knowledge provided by experts may
sometimes contain ambiguity or non-informative guesswork. It
is noted that uncertainty in this paper refers to the randomness
of the reliability and failure relationship among system
elements. The reliability of a system element is treated as a
random variable to quantify its subjective belief. The failure
relationship is represented with conditional probabilities to
provide amore generic and realistic representation. Uncertainty
may influence both the accuracy and precision of reliability
estimation. High accuracy of the reliability estimation means
that the expected reliability has small or no deviation from its
true value. High precision means the variance of the estimated
reliability issmall. Although in the FT every basic failure event
isassociated with aprobability, thelogic gates are deterministic
and there is no belief-updating process as in the Bayesian
inference scheme aclopted by BNs. In BNs, each node is
assigned by a random variable with certain probability
distribution in describing a particular event. Probability
distribution can fully capture the uncertain information of the
data. Arcs direct from parent nodes to children nodes in
indicating the cause-effect relationships. Conditional
probability tables (CPTs) are specified for each pair of
connected nodes in quantifying the dependency strength. CPT
is rather flexible in handling logic relationships with
uncertainty.

Incorporating domain and engineering knowledge into our
new BN, we provide a more powerful and flexible
representation of dependency among different variables by
solving some of the limitations (e.g., undirected arcs and
connection between nodes) that we found in [1].

C.A BN Representation of Hierarchical System Structure
A BN isused to model the interdependency in the system. A



general BN includes a structure called a DAG and a set of
parameters. The DAG consists of nodes which are random
variables and directed arcs. An arc pointing from node A to
node B indicates that A is a direct cause (parent) of B, where
“direct” means that the causal influence from A to B is not
mediated by other nodes in the BN. A directed path (a directed
arc or a set of singly connected arcs with the same direction)
from A to B indicates that A isacause (called an ancestor) of B.
According to this definition, an ancestor can be a parent or an
indirect cause. Furthermore, the parameters of aBN include the
conditional probability distribution of each node given its
parents. When the nodes are categorical variables, the
parameters can be specified by the conditional probability mass
function (PMF) of each node.

To adapt the general BN to our problem, we propose the
following new definitions and notations. In this paper, a
component or a subsystem of a hierarchical system is referred
as an “element.” When a BN is used for a hierarchical system,
each node represents an element. Specifically, let node X;; be
the health status of the j" element at the |" level, where|=1,...,
L,j=1,..., N, and L and N, are the total number of levels of the
system and the total number of elements at level |, respectively.
To make BNs an appropriate representation for hierarchical
systems, the following restrictions are further defined on the
directed arcs:

(i) Arcscan only point from lower levels to higher levels, but
not reverse. The reason for this restriction is based on the
assumption that failure of higher-level element (eg., a
subsystem) is caused by its composing lower-level element
(e.g., one of its components).

(i) There must be a drected pah from each
component/subsystem to the system, i.e., we exclude nodes
that do not exert any causal influence (directly or indirectly)
on the system from the BN.

A portion of a generic BN representation of multilevel
hierarchical systemsis given in Fig. 2. Furthermore, this paper
focuses on binomial failuresfor an element, i.e., each node, X,
in the BN can take values 0 or 1 to represent the status
“working” or “failure,” respectively. Then, for a node with K
parents, the parameters, i.e., the conditional PMF, includes 2¢
probabilities. For example, consider node X, ; in Fig. 2. Because
X1 has two parents {X.11, X.12}, its parameters include 22
probabilities, including P(X 1=1| X.11=0, X.1,=0), P(X 1=1]
Xi11=1, X12=0), P(X1=1] X.11=0, X12=1), and P(X =1
X117, X1 2=1).
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Fig. 2. A BN representation of ahierarchical system

Note that the popular serial and parallel systems are just
special, deterministic cases of the BN representation. For
example, if subsystem X, ; isaparallel system, it simply means
that P(X 1=1| X.1,1=0, X.12=0) = 0, P(X| 1=1| X.11=1, X.1,=0) =
0, P(X,1=1| X.11=0, X;.12=1) =0, and P(X; 1=1| X;.11=1, X.12=1)
= 1. If subsystem X, ; is a serid system, it simply means that
P(X11=1] X1.1,1=0, X1.1,2=0) = 0, P(X1=1] X.11=1, X.12=0) = 1,
P(X1=1| X.11=0, X.12=1) = 1, and P(X; 1=1| X.11=1, X.12=1) =
1. Here, it isvery important to note that the BN representation is
different from the reliability diagram, e.g., although X,.;; and
X.12 are drawn parallel to each other, they may compose a
seria system. Furthermore, BN provides a more flexible
mechanism of representing the probabilistic interrelationships
among e€lements. The failure interdependency between
elements on the same level can be incorporated in the
conditional probability.

IV. MULTI-LEVEL INFORMATION ANALYSISAND FUSION
FRAMEWORK

For each node in the BN presented in Fig. 2, there will be
three types of information sources that need to be fused,
including the test data in terms of failure or survival, prior
knowledge about this node in terms of Beta prior distribution
parameters, and the information propagated from its ancestors
(i.e., the lower-level elements) in terms of additional inputs to
the prior distribution parameters. Here, the fusion considers
only the information at the “immediate” lower level but not all
lower levels due to Restriction (ii) in Section I11.C.

Because information fusion at each node follows the same
manner, we will focus on a subsystem, X;, to present the
proposed method. The method can easily be applied to the
elements at any levels. Note that since components are at the
lowest level of a hierarchical system, there is no propagated
information considered. Therefore, only two sources of
information, i.e., the test data and prior knowledge, will be
fused. Thisisjust a special case of the proposed method.

A. Infor mation Integration of Single Element

Consider a binomial distribution model for the test data
regarding X;;. Such data can be obtained from success-failure
reliability tests, where a sample of test units is tested within
certain pre-determined time duration and the number of
survivors and failures after the test is recorded. Such data can
evaluate the average reliability within the time duration, and
therefore, the average reliability quantity that will not involve
time. Given that n independent tests are conducted and the
reliability (i.e., the survival probability) of each test is r, the
number of survivors, s, follows a binomial distribution, i.e.,
s~binomial(r,n). The prior knowledge about X;;, is in the form
of a prior distribution for r. A beta prior distribution is
commonly adopted. The rationales are: (i) a beta prior is the
conjugate prior for binomial data, and thus, results in
computational advantages; (ii) the beta family isrich in shape,
thus providing a flexible representation for various types of
prior knowledge; (iii) the beta family is the best choice for use
in determining the most conservative prior when there is little
prior knowledge available [24]; and (iv) the effect of assuming



abeta prior in binomial data, when the true prior is not beta, is
negligible in many practical applications [23]. Let r follow a
beta prior distribution, i.e, r~beta(s+1, n’s+1). The
parameters of this distribution are denoted by +1 and n>->+1
for the ease of interpretation, which is that, when s” and n° are
integers, s+1 and n%-s’+1 are the numbers of prior survivors
and failures, respectively. And their sum, n°+2, is the total
number of prior tests [25]. With this conjugate prior
distribution, the posterior distribution of r isalso beta, i.e.,

r ~beta(s+s’+Ln+n’ —s—s’+1). (1)

B. Induced Prior Propagation

Note that what has been described above is how to apply
standard Bayesian inference for fusing the test data and prior
knowledge regarding X;. Full information fusion needs to
incorporate the information propagated from the components of
X;- Inthis paper, we consider the propagated effects as another
“prior” knowledge for X;, achieved from investigating the
reliability of its composing subsystems or components. To
distinguish, this prior is called the “induced prior” and the prior
discussed previoudly is called the “native prior.” We will
discuss how to transform the propagated reliability information
into the induced prior for X;;. Considering that the element X;;
consists of p;; lower-level eements, { X4, ..., Xl—lyn,j }. Let

PA(X;) denote the parents of the element X, i.e., PA(X,;) ©

{Xl—l,jt""Xl—l,pi,j}- According to the Law of Totad
Probability, the reliability of X; is

P(XI,J ZO)ZZ%,J)hP(PA(XI,J)Zh) 2

where where o, =P(X, ; =0|PA(X, /)=h), and h is

used to index each combination of values for the parents X;;.
For example, consider the subsystem X, ; in Fig. 2, which has
two parents {X,.1.1 , X.1.2}, andh={{0,0},{0,1},{1,0}, {1,1}}.
In this paper, we assume ¢ to be constants known from
design or statistical analysis. For example, in special cases of a
serial or parallel system, o n can be O or 1. Furthermore,
according to the Decomposition Theory of BN, P(PA(X;)) can
be decomposed into a product of the probability of each
variable in PA(X;) given its parents. Specifically, let PA(X;)
denote the i parent of X}, i=1,..., pij, i.e., PAi(X;) € PA(X,).
Then,
P(PA(X,;)=h)=

HP(PA (X,,)= K‘PA(PAI (X,,)= k))

where xisthe value of PA(X;) in h, and k is avector of the
values of PA(PA(X;)) inh. Eq. (3) indicates that P(PA(X;)=h)
is a function of the (conditional) reliability of each parent for
X;. For example, in Fig. 2, P(PA(X 1)={0,1}) = P(X.11=0,
X|_l’2=1) = P(X|_1V1=0){ 1‘P(X|_112=O| X|_1Yl=0)}, where P(X|_l’1=0)
and P(X.1,=0] X.1;=0) are the reliability and conditional
reliability of X1 1 and X1 5, respectively.

Therefore, as long as the (conditional) reliability of each
parent for X;; is known, the reliability of X; in (2) can be fully

3

specified. Considering the conditional reliability of the i"
parent of X|,j, P(PA(X|J)=O|PA(PA,(X|J)=|()) If PA,(XH) isa
lowest-level element in ahierarchical system, only test dataand
prior knowledge are available and there is no propagated
reliability information needing to be fused. The available two
sources of information can be fused with standard Bayesian
inference. Specifically, let s, )« be the number of survivors out
of Ny« independent tests on PA(X ;) while keeping its parents
at the status specified by k; i.e., PA(PA(X,;)=k). We use a beta
prior for the conditional reliability of PA (X)), i.e.,

P(PA(X,,)=0[PA(PA (X, ) =Kk))~
beta(s(oi,l,j),k +ln8,l,j),k -S(Oi,l,j),k +1),

(4)

where §,,,, +1 and ng, . -y« +1 ae integers and

can be respectively interpreted as the numbers of prior
survivors and failuresin the hypothetical prior tests on PA(X;)
when PA(PAI(X;)=k). Then, the posterior distribution for the
conditional reliability of PAI(X;) is

P(PA (X, )=0PA(PA(X,,)=k))~
baa(s(i,l,j),k +S((:,|,j),k +l’ (5)
n(i,l,j),k + n?i,l.j),k _S(i,l,j).k _S((?,l,j),k +1)

Note that if a parent of X;; does not have any parent in the
BN, its unconditional reliability can be specified in a similar
way. After the posterior distribution for the (conditional)
reliability of each parent of X; is obtained, these posterior
distributions can be plugged into (3), which is further plugged
into (2) to compute the reliability of X;. The reliability
computed in this way integrates the information propagated
from the lower-level elements and thus is the afore-defined
induced prior for X;.

Due to the complex functional form of the induced prior, itis
very likely that this prior distribution is non-parametric. For
computational simplicity, we adapt the approach by [26] to our
problem by setting and approximating the exact induced prior
with abetadistribution having the same first two moments. Use
of the approximation is also for the convenience of combining
the induced prior with the native beta prior distribution.
Specifically, let the approximate beta distribution be
P(Xj=0)~beta(b, c), where the parameters b and c are derived
as described in the Appendix.

C.Native and Induced Priors Combination

Furthermore, the induced beta(b, ¢) and native beta(s’+1, s°
-s°+1) priors can be combined to generate asingle beta prior for
element X;. In this paper, we follow the natural conjugates for
generating the combined prior [23], i.e., beta(w,b+wsy(+1),
wic+wy(n’-s’+1)), where w; and w, are the weighting
coefficients (w; + W, =1) assigned to the induced and native
priors, respectively. For example, if the production of the
components and the assembly of the components into the
subsystem are carried out in two different sites, it may be
appropriate to consider the induced and native prior
information to be obtained independently. Dependency may



occur, for example, if the same group of domain experts is
asked to assess the native prior of the subsystem as well asthe
priors of the components of this subsystem.

Finally, the combined prior distribution isintegrated with the
binomial test data on subsystem X,; to produce the posterior
distribution for the reliability of X, i.e.,

beta(s+wo-+w(S +1), n—s+we+w (P - +1) (6

This completes the fusion of the three sources of reliability
information of X,;. It is noted that X, ;, denoting the system as a
whole, is the only element at level L. This generic procedure
can be applied iteratively to construct the multilevel reliability
model for multilevel systems with any structure, taking
advantage of the generic structure representation of BN and the
generic Bayesian framework of the model parameter

aggregation.

V.IMPLEMENTATION PROCESS AND CASE STUDY

In this section we provide implementation of advanced
causal structure by incorporating domain and engineering
knowledge, and we demonstrate the proposed procedure of the
reliability modeling of hierarchical systems. While this paper
mainly focuses on the new implementation of advanced causal
structure, causal analysis with BNs and various test cases can
be found in detail in [1]. In that article we included and
evauated the effectiveness and accuracy of constructed causal
Bayesian network (CBN) representation by comparing the
number of causal relationships from trained data and original
structures, and showed that our constructed CBN is highly
effective and accurate in the targeted system.

A. Data Smulation Based on Domain Knowledge

We have developed a laboratory testbed, consisting of a
fault-enabled 24 VDC supply to power the three phases of the
electromechanical actuator servo drives (ASD), and integrated
the switch-mode power supply (SMPS) with a high-speed data
acquisition (DAQ) unit (National Instruments USB-6251) [2],
[28]. This enables us to leverage data from complex
mechanical/electrical  actuator systems including various
components, utilizing direct experience and knowledge. This
EMA system consists of four subsystems, each of which is
composed of a variety of lower-level subsystems and
components. Due to the tree structure of the system, afailure at
the component level may propagate through the subsystem to
the system and cause the failure of the system as awhole.

State-of-health (SOH) signals indicate the health conditions
for al the components, subsystems, and the overall system.
These data are generated with the guidance of prior information
and domain knowledge. Without losing generdlity, there is a
three-level system structure as referred to in Fig. 1. The first
(top) level is the system level, which indicates the SOH of the
overall system. The second level is the subsystem level where
each node represents the SOH of a particular subsystem, such
as alogic SMPS (switch-mode power supply), aMotor SMPS,
or an Actuator Servo Drive, etc. The third (bottom) level isthe
component level, and each node represents the SOH of a

particular component, such as capacitors, MOSFETS, etc. Prior
probabilities and conditional probability tables are acquired
from dataand domain knowledge. In the validation of structure,
learned CBN is compared with the true structure assumed at the
beginning.

B. Advanced Causal Structure Training and Results

Inthe FT, simplelogic operationslike AND, OR are used. In
reality, there might be other unknown causes which the model
fails to cover. In general BN, the undirected arcs might exist
even with adeficiency of sensors collecting datain elements. In
that case, we need experts making decisions to manually
modify the learned structure to provide correct results in the
validation step. To overcome aforementioned issues and
provide better accurate causal structure, we have also
developed advanced causal structure incorporating domain and
engineering knowledge, such as FMEA.

There are cause-and-effect relationships for these nodes. For
example, if failures such as package degradation happen in
three phases, the transistor will malfunction and then the
H-Bridge will fail. Therefore our advanced troubleshooting
reasoning improved from [1], shown in Fig. 3, inherits
information from both CBN and FT. In this case FT
compensates CBN in describing the complex relationship
among €lementsin the system. This demonstrates the capability
and flexibility of our proposed solution in handling a more
complex system by describing the complex relationships
among elements of the four-layer system.

Fig. 3. Implementation of advanced troubleshooting reasoning

C.Case Sudy

To demonstrate the proposed procedure of the reliability
modeling of hierarchical systems, the EMA system is
recomposed and investigated based on a hardware testbed with
fault-enabled elements. Our testbed is capable of injecting
controlled health status degradation and failure to the elements
at different levels. Pulse width modulator (PWM) control under
Motor SMPS has duplicated function with PWM control under
ASD, and therefore is omitted for this case study. We
characterize and represent the relationships of X31 (Motor
SMPS), X21 (Capacitor) and X22 (MOSFET) from failure
modes of EMA systems. For example, MOS transistors are
used in the primary side of the circuit as a switch to control the



duration of primary current flow, and hence the output voltage,
and they comprise the synchronous forward and catch rectifiers
in the secondary side. At every switching instance, the
MOSFET encounters a rapid change of voltage across its
drain-source terminals (dv/dt) as well as a spike of voltage
kickback, due to the inductance of the circuit. At high values of
dv/dt, the parasitic bipolar in the MOSFET can turn ON,
causing uncontrolled operation. At higher voltages, the
associated electric field is also very high, causing avalanche
injection current and increasing the probability of turning the
bipolar ON. This shoot-through current is a bypass current
across the MOSFET through the gate capacitances. It resultsin
giving rise to a current in the capacitance through the base
resistance. Eventually, capacitor failures in the motor supply
lead to an increased voltage ripple and reduction in current
output. MOSFET failures lead to a complete loss of current
and voltage. The BN representation of this investigated
four-level systemisshown in Fig. 4. The whole system, X4 1, iS
composed of two subsystems, X3, and X3,, which consist of
multiple components, X, j = 1,...,4 and Xy, j=1,...,.3. The
conditional probabilities corresponding to the BN are
summarized in Table . For instance, the probability of X3=0is
1 when X5;=0 and X,,=0.

There are three types of information fused in this analysis.
Table 1l summarizes the availabilities of components,
subsystems and the overal system in terms of beta-prior
distribution parameters. This type of prior information may be
obtained from a compendium of various data sources for
identical or similar components/subsystems under a similar
utility environment. To be more specific, combined data
sources provided include domain knowledge and judgments of
expertise, test data of similar types of system elements, and
historical studies on the same type of system elements. It is
noticed that for prior parameters specification [10], the
practitioners are encouraged to follow some existing work such
astechnical reports and | EEE standards. Because of the failure
interdependency of the availability between components Xy,
and X»,, and that among Xi; , X1» and Xy3, the conditional beta
prior distributions of Xy and X,, are provided.

| Level 3

Subsystems

Componens (e)—()
Components

Components

Fig. 4. BN representation of the case study system

TABLE . CONDITIONAL PROBABILITY TABLE
P(X23=0) X12=0 Xpp=1
X11=0, X1;3=0 1 0
X11=1, X33=0 0 0
X11=0, X33=1 0 0
Xy =1, Xga=1 0 0
P(X3; = 0) X2=0 Xn=1
Xn=0 1 0
Xn=1 0 0
P(X5)= 0 Xog = Xoz= 1
Xo0= 0 1 0
Xop= 1 0 0
P(Xy=0) Xx=0 Xz=1
Xg= 0 1 1
Xgp= 1 1 0
TABLEII. BETA-PRIOR PARAMETERS
0 0
Component Stk N0 ik
X12|X11=0, X15=0 803.2 819.3
XyolX13=1, X45=0 642.5 688
X12|X11=0, X13=1 548.3 589.3
X12[X11=1, Xy3=1 581 7235
X11 793.2 823.1
Xi3 641.2 664.3
0 0
Component Sk ok
X21|X22=0 1121.4 1164.5
X21|X22=1 878 1013.6
Xoo 512.5 537.2
0 0
Component Stk N0k
Xos 2315 2452
Xos 189.3 205.1
0 0
SR St i)k NG,k
Xz 80.1 84.3
Xap 58.6 62.1
0 0
System St i)k NG,k
Xa1 43.1 46.2

For component X3, components Xy4, X3, and X3 are serialy
connected. Based on the given information about the
components’ prior distribution parameters, binomial test results
and conditional probability in Tables I-111, the induced prior
distribution for the availability of X,3 is a beta(962, 135)
distribution, according to Eq. (3). Similarly, the induced priors
for the availability of subsystems X3; and X3, are beta(934, 95)
and beta(422.6,71.6) distributions, respectively. The native
prior distribution parameters listed in Table |1 will be used to
caculate the combined priors of X3, X3 and Xs. It is
reasonable to assume that the native prior distribution
parameter may be estimated based on prior data listed in Table
[1. Thus, the sum of the weighting coefficients w; and w; are set
to be 1. In this study, we assign 0.75 and 0.25 to the induced
prior and the native prior, respectively, i.e.,, w; = 0.75 and w, =
0.25. This indicates that more weight will be placed on the
information aggregated from alower level of the subsystem. As
a result, the combined priors for X, X3 and Xz are
beta(414.875, 44.775), beta(720.775, 72.6) and beta(150.35,
21.3), respectively. Posteriors for Xos, X3; and Xs, are obtained
through Eqg. (1) by integrating the combined priors and
binomial test data. These posterior beta distributions are
graphically shown as solid curves in Fig. 5, and their
corresponding quantiles are summarized in Table IV.



The system is composed of two subsystems connected in
paralel. The beta posterior parameters of subsystems are now
treated as the “component” prior parameters. With the same
aggregation method, the induced beta prior distribution for X4;
is beta(2116.2, 19.8). By assigning the same weighting
coefficients, i.e., w;=0.75 and w,=0.25, the combined prior
distribution for Sis beta(562.125, 8.025). Posterior is obtained
through Eq. (1) by integrating the combined prior and its
corresponding binomial test data.

TABLE I1I. BINOMIAL TEST RESULTS

Component Sk NG k

X12|X11=0, X13:0 252 265

X12|X11:1, X13:0 230 265

X12|X11=0, Xi13=1 234 265

X12|X11=l, X13:1 205 265

X1 241 257

Xi3 201 223
Component Stk NGk

X21[X22=0 149 160

Xog[Xao=1 135 160

Xoo 161 170
Component S0k NGtk

Xo3 62 64

Xog 141 146
Subsystem StiLi)k NGk

Xa1 53 3
Xao 48 2

System Silidk NGk

Xa1 23 24

The system posterior isgraphically shownin Fig. 5 and listed
in Table 1V, together with its corresponding quantiles. It is
noted that in calculating the induced prior parameters for X,
Xz and Xz, the Kolmogorov-Smirnov (KS) [33] p-values are
al larger than 0.05, indicating that the approximation is
acceptable. Numerical values of posterior quantiles provide
information regarding the reliabilities of the investigated
system elements. For example, 0.97574 and 0.99203 are X4's
0.05 and 0.95 quantiles. They can be interpreted as based on the
current available reliability information. The subjective belief
of the reliability of the overal system is between [0.97574,
0.99203] with 90% credibility. The median of 0.98535 is the
point estimate of the overall system reliability. Maintenance
decisions can be made according to such quantities.

Theimpacts of components' failure interdependency are also
investigated in this case study. The BN shows that components
Xo1 @and Xy, are not independent, and the availahility of X;, has
apositive impact on that of X»;. When X,, isfailed, X5, ismore
likely to fail. This can be seen from the binomial test data in
Table Il and prior parameters in Table 1. The same failure
interdependency exists among Xy, Xi» and Xya. If themethod in

[27] is adopted and the failure interdependencies between
components are neglected, the predicted mean of availability of
serial subsystem X,; and Xy, will be higher than their true
values, shown as the dashed curves in Fig. 5. However, this
does not indicate that we should neglect the interdependencies,
since if the interdependent relationship is strong, the
discrepancy will be obviously large. Moreover, the value of the
proposed methodology is to quantify the reliability of the
system, which includes interdependent
subsystems/components. Such interdependencies are often
neglected in much existing research by assuming independent
subsystems/components.

One concern related to the problem scale for large systemsis
the quality of the prior approximation, i.e., the approximation
of the induced priors. To verify the approximation results, KS
test is applied to test whether the approximation quality is
acceptable. Table IV lists the p-values of K-S tests. Since all
p-values are larger than significance level of 0.05, they imply
that the approximation quality is satisfactory.

V1. DISCUSSION ON APPLICABILITY

Expert troubleshooting and decision support systems are
needed to achieve significant savings, which is accomplished
by learning what diagnostic actions lead to correct outcomes
and minimizing wasted efforts while achieving reduced
maintenance costs. According to an analysis[34] by NAVAIR,
it is possible to achieve 20% maintenance cost savings on
deployed electronic systems. The presented approach will be
used to develop an expert troubleshooting tool as a part of an
integrated system health management (ISHM) system for
complex mechanical/electrical system faults/failures. It will
ultimately  provide  substantial benefits to  the
maintainer/operator of complex systems and maintenance
facilities.

The improved reliability-based decision  support
methodology presented in this paper provides a foundation for
an effective troubleshooting and decision support system to the
maintainer/operator of complex systems and maintenance
facilities. Integration of the CBN into condition-based
maintenance (CBM) systems will enable maintainers to
interpret complex interactions among components and
subsystems embedded within the system, facilitating root cause
analysis and reducing maintenance costs. As an illustration of
how this can be done, consider integration with a ground-based
application that provides an easy-to-understand fusion of
parameters and required maintenance, S0 maintenance
personnel can have an extraangle of insight into the systemsfor
which they are responsible.

TABLEIV. RESULTS OF THE AVAILABILITY ANALYSISFOR Xp3, Xa1, X32, AND Xy
Component / Subsystem Induced Prior KStest Beta Posterior Posterior Quantiles
/ System p-value 0.05 0.5 0.95
X3 X962,135) 0.759 BAA76.575, 46.775) 0.88927 0.91115 0.93019
Xa1 934, 95) 0.954 BK773.775, 75.6) 0.89440 0.91132 0.92649
X2 (422.6, 71.6) 0.859 £3(198.35,23.3) 0.85915 0.89607 0.92655
Xa £2116.2, 19.8) 0.969 585.125,9.025) 0.97574 0.98535 0.99203
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Fig. 5. Posterior distributions of component, subsystem and system
reliability

VII. CONCLUSION

The proposed advanced causal structure and reliability
modeling of multilevel hierarchical systems are used to
effectively represent the hierarchical structure of systems
and the failure interdependency among elements at different
levels with FMEA and test data acquired from complex
EMA systems, integrating the SMPS with a high-speed
DAQ unit.

We have developed advanced troubleshooting reasoning
with causal analysis incorporating domain and engineering
knowledge, and explained the importance. In our approach,
causal analysis alows us to represent the component
interactions and cascaded failure/degradation propagation.
Based on the BN representation, a generic Bayesian

framework is developed to aggregate the multilevel
information with binomial test dataand prior knowledge that
is modeled with beta distribution. The case study based on
the data collected from the testbed shows the effectiveness of
the proposed methodology. Such numerical values can help
maintenance personnel make decisions such as whether
maintenance tasks should be assigned.

Our approach presented in this paper provides a
foundation for an effective decision support system to the
maintainer of complex systems and maintenance facilities.
Integration of our approach into condition-based
maintenance (CBM) systems will enable maintainers to
interpret complex interactions among components and
subsystems embedded within the system, facilitating root
cause analysis and reduce maintenance costs.

We expect the approach described in this paper to become
a very important decision support methodology that will
enable enhancementsin flight safety and CBM by increasing
availability and mission-effectiveness while reducing
mai ntenance costs.

APPENDIX

Denote the approximate induced prior for X; by P(X;=0)
~ beta(b,c). Then, the first two moments of this distribution
are

b . b(b+1)
M,=——, andM, = ————~ ()
' b+c ? (b+c)(b+c+1)
respectively. Here, “~" denotes these two moments are

derived from the approximate distribution. Next, we derive

the first two moments of the exact distribution for X,

denoted by M, and M,, respectively. The exact distributionis

in the form specified by plugging (3) into (2), i.e.,

P (X, =0)= (8)
Zh:a“'”“r.[ P (PA‘ (X,,)= K‘PA (PA (X1;)=k))-

Recall that h is used to index each combination of valuesfor

the parents of X;, xisthe value for PA(X;) inh, andk isa

vector of the values for PA(PA(X;)) in h, and I=0,1. To

facilitate subsequent derivation, (8) can be further written as:

P(X,,=0)= 9
Tl {K‘f P(PA (X,;)=0[PA (PA (X,,)=k ))}

The first moment of P(X;;=0) is the mean, i.e.,

M,=E(P(X,=0))

- Zh:a“’”"l_.[ {x— E [P (PAi (X,,)= O‘PA (PA (X,,)=k ))}}
=2 aim]] {’C_ Yot S(:H'”'K - } (10)

Nk * Nt 2
The second moment of P(X;;=0) is the mean of P(X;=0)?,
i.e,

M, =E(P(X,, =0))

=g ]l {’(2 - 2x
h i

0

S kT Sinpk Tl

G0
0
Ner e T Nt 2




0 0
(S * St + 1) (S *+ St +2) (11)

0 0
(n(u,l,n,k LN 2)(n(|,1,1),k NG00k +3)

Then, for a beta distribution, the parameters b and ¢ can be
defined as

(1

(2

(3l

(4

(5]

(6]

(7

(8]

(9

[19]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

szl(Ml_MZ)/(Mz_Mlz)v
c=@1-M )M,

(12)
_Mz)/(Mz_Mlz)-
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