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 Technology Overview
* Hype, Myths, and Reality
3D IC Test Challenges
— What to test? When to test? How to test?

* Emerging Solutions
— Recent advances

— Some controversies



Stacking with Through-Silicon Vias (TSVs)

Traditional stacking with:

3D chip stacking with wire-bonds:

Heterogeneous technologies S

Not-so-dense integration, Not-so-small e |
: J J J J J J J

footprlnt board

New stacking technology: System-in-Package (SiP)
Through-Silicon Vias (TSVs):

Metal vias that provide interconnects
from front-side to back-side

through silicon substrate

3D IC Package

micro-
Diameter 5 pum bumps = nEE NN
Height 50 um
Aspect ratio 10:1

Minimum pitch 10 pm TSV-Based 3D-SIC



Memory-on-Logic (JEDEC Wide I/O

DRAM)
e 4 channels (a-c)

e 4x128 bit=512 bitl/O
* 4x4.25 Gbytes/s = 17 Gbytes/s

bandwidth

* Up to 4 stacked dies (Rank 0-3)

3D-SIC

Applications

Rankx

2.5D-SIC

3D-SIC Package
~
Rank 3

wide I/0 DRAM stack
A

2.5D-SIC Package

wide |/O DRAM stack




Applications

Future applications:

* Logic-on-logic

* Multi-tower stacks (both logic-on-logic and memory-
on-logic)

“““ Micro-Bumps

TSVs

Micro-Bumps

TSVs

T P PR B E T Fe— CuPillars/C4 Bumps

Package substrate

BGA Solder
Balls



TSV Formation, Wafer Thinning

deep s_ilicon via oxide Cu seed
etching deposition deposition Cu plating CMP

Difficult to process wafers thinned below 100 microns
* Mount wafers on temporary wafer handlers (carriers)
» Thinning and backside processing

Option 1: Mount IC wafer face-down on carrier, bond “face-up” (B2F)
» Scalable solution, supports more stacked layers

Option 2: Bond wafer to 3D stack in “face-down” configuration (F2F)
» More interconnects between active device on two layers
* Number of stacked dies limited to 2



Fabrication of IC Stacks

Aligned F2F
bonding

o

Thinning

F2F.[
- B2F {

Temporary bonding

Thinning

Aligned B2F bonding




Steps in F2F Bonding

Bulk Si (IC 2)
TSV.
: ..-‘"fﬁ“‘n Heat sink
TSV prefabricated, but buried > Bt
@%k SHIC2) Bulk Si (IC 2) E E
Backside via
Align Bonding Thinning (grinding) and bump

pracess)



Steps in B2F Bonding
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Carrier
Wafer

temporary

carrier bonding
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back-side
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Hype: Industry Trends in 3D
Integration
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on Volta GPUs pitch in-house production of 3D
micro-bumps ICs



Hype: Industry Trends in 3D
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Hype: EDA Support for 3D Flows

cadence” GMSARY

 Tools for 3D included in e Tools for 3D included in

TSMC Reference Flow TSMC Reference Flow
« Validated on a memory-on-

logic design with Wide-I/O

SYNOPSYS

« Collaborates with A*STAR IME
to Optimize Through-Silicon-
Interposer (TSI) Technology




3D ICs: Reality

e 3D stacking technology demonstrated on silicon (but limited)
— Xilinx, TSMC, GlobalFoundries, AMD

TSMC'’s First
*$ Heterogeneous
CoWosS Vehicle

65nm GPS, 40nm DRAM and 28nm SoC

[source: Xilinx] ®

[source: TSMC] [source: Globalfoundries]

* Cost remains ultimate challenge

» Efficient 3D IC ecosystem needed for high-volume manufacturing



3D ICs: Reality (AMD “Fiji”)

4 4GB High-Bandwidth Memory
4 4096-bit wide interface
4 512 Gb/s Memory Bandwidth

~

A Graphics Core Next Architecture
4 64 Compute Units

A First high-volume interposer

A First Through Silicon Vias (TSVs) and 4 4096 Stream Processors
nBumps in the graphics industry A 596 sg. mm. Engine

A Most discrete dies (22) in a single package
A Total 1011 sgq. mm.
A 186k pBumps, 25k C4 bumps

Jeff Rearick, 3D Test Workshop, 2015




Reality: Need for 3D IC Ecosystem

e Libraries
e PDKs
e Ref. flows

* Cost models
* Test strategies

e 3D tools

* 3D partitioning
* Floor planning

* |nterface standards:
Wide 1/0, test I/0O

[source:
cadence.com]




Reality: Supply Chain Needed
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From Two to Three (or More?) Test

Insertions
2D Flow 3D Flow

Known Good Die

(KGD) test

— !!! Llr SEC!IHQ l

— ATE + wafer probe station

Known Good
Stack
(KGS) test

— Prevent packaging costs —
— ATE + wafer probe station &3

4

Test Content, Test Delivery, Test Resource Optimization
and Reuse (Cost Minimization)

— Guarantee outgoing

product quality
— ATE + socket + handler



3D Test Challenges

How to test the interposer?

Micro-bump probe access

— Probe needles much larger

than TSV/micro-bump size and
pitch

Probe card applies force
(weight)

— TSVs/microbumps have low
fracture strength

Post-bond access: No direct
access to non-bottom dies

New defects due to TSV
manufacturing process

bottom die




TSV Defect

Improperly filled TSVs Insufficiently filled TSVs Micro-voids on TSV axis Micro-voids on TSV axis
(quasi-conformal filling) + large voids at bottom

Misalignment Misaligned bumps, Improperly solkderad Shorts due to Sn squeezing
almost-short with neighbors micro bumps
Examples of TSV Defects
How to test the TSVs? Pre-bond, post-bond (IMEC, Belgium)

— Underfill, pinhole defects, opens: pre-bond
— Misalighment, mechanical/thermal stress: post-bond thermal effects

19



TSV Defects

\ ’ /Insulator \ ® /Insulator
Insulator
RTSVI |
RTSV R|Eak
icm ’\/V\/_-l_
i Rysy —
Ruoid —
Crov
Rrsva I
e I Crsv2 Crsv
Substrate Substrate — Substrate —
(a) (b) (c)

(a) — Fault-free TSV
(b) — Resistive-open defect
(c) — Leakage defect



TSV Defects (Contd.)

Stress-induced defects

* Copper area
* Silicon area
e Qverall area

Cu - area

Thermal mismatch
(extrinsic stress)

>

= TSV extrusion

= Debonding

= Bump crack &
delamination

Rapid grain growth
(intrinsic stress)

= Void formation

= Void growth &
coalescence

= Crack generation
& propagation

Si - area Overall area

Cu-induced
residual stress

>

= Change of carrier
mobility

Bump process-
induced stress

>

= Plastic
deformation &
fracture in bump
and soldering

G. Lee et al — 3DIC'12




Pre-Bond Testing of TSVs:

Myth or Reality 9%

- -

<~ <
<> <

 Some semiconductor companies say no!
— Too fragile, too difficult to test pre-bond
— Process people will fix the yield problem!

— “We deal with much larger number of vias through DFM
rules, and TSVs are at least an order of magnitude larger...”

 But...
— TSV defects affect surrounding silicon!
— So more testing of die logic needed

— Micro-bump defects not addressed as easily by process fixes
— Probing solutions on the horizon



IMEC — Cascade Microtech

[Marinissen et al, ITC'14]

Cascade Microtech’s Probe
Technology

* Pyramid Probes® Rocking Beam
Interp.

*  MEMS-type thin-film probe card

» Lithographically-defined probe tips
IMEC'’s 2.5D Test Chip ‘Vesuvius-2.5D’
* Full four-bank JEDEC Wide-I/O interface (= 1,200 micro-bumps)

* Daisy-chains through micro-bumps
Demonstrated

 Successful probing with single-channel Wide-1/O probe card on
Cascade Microtech CM300 probe station

* Limited probe marks on micro-bumps: Cu and Cu/Ni/Sn (after
reflow)

* No measureable impact of probing on stacking yield

e 3D-COSTAR: Economic feasibility in single-site testing




NanoPierce™ TSV Contact
Solution (FormFactor)

Socket contacts

Down to 20 um
array pitch

Flexible film with
many nanofibers

10 ,
8- Y Nanopierce™ l R
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Probing with “TSV Matrices” (buke Univ.)

US008775108B2

a2 United States Patent (10) Patent No.: US 8,775,108 B2
Chakrabarty et al. 45) Date of Patent: Jul. 8, 2014
(54) METHOD AND ARCHITECTURE FOR 5,881,067 A * 3/1999 Narayananetal. ... 714/726
B 5951,702 A *  9/1999 Limetal. ..ccooovvcrrrren... 714/718
PRE-BOND PROBING OFTSVS IN 3D 6,057,954 A * 5/2000 Parayanthaletal. ... 359/248
STACKED INTEGRATED CIRCUITS 6,182,256 B1*  1/2001 Qureshi ...ccocccoommrrern.. 714/726
6,252,448 B1* 6/2001 Schober ..........ooow...... 327/259
(75) Inventors: Krishnendu Chakrabarty, Chapel Hill, 7,739,568 Bl * 6/2010 Bertanzetti ................ 714/729
. . 7,793,180 B1* 9/2010 Shrivastava ................. 714/726
1\{%@8)’ Brandon Noia, Durham, NC 7,978,554 B2* 7/2011 Kimetal. .cooo......... 365/210.1
(US) 8.024.631 B1* 92011 Bertanzetti ............. 714/729
. 8,107,777 B2* /2012 Farah ......cooocomomevcre. 385/14
(73) Assignee: Duke University, Durham, NC (US) 8,373,493 B2* 2/2013 Chakrabarty etal. ........ 327/427
8436,639 B2* 52013 GOel ccccorrriirerrcirine 326/16
(*) Notice: Subject to any disclaimer, the term of this 2002%406419:333 i% : 2; %8 (1)3 511“ et al. I 3%22%

: - amamura et al. .............
patent is extended or adjusted under 35 2002/0184584 Al* 12/2002 Taniguchietal. .......... 714/726
U.S.C. 154(b) by 392 days. 2003/0218488 Al* 11/2003 Parulkaret al. ............... 327/218
2004/0119502 Al* 6/2004 Chandaretal. .............. 326/96

Noia and Chakrabarty, IEEE Trans.CAD, 2013



TSV Probing for Die Logic Testing (Duke

Univ.)

US008782479B2

a2 United States Patent
Chakrabarty et al.

(10) Patent No.:

45) Date of Patent:

US 8,782,479 B2
Jul. 15, 2014

(54) SCAN TEST OF DIE LOGIC IN 3D ICS USING
TSV PROBING

(71) Applicant: Duke University, Durham, NC (US)

(72) Inventors: Krishnendu Chakrabarty, Chapel Hill,
NC (US); Brandon Noia, Durham, NC
(US)

(73) Assignee: Duke University, Durham, NC (US)

* Notice: Subject to any disclaimer, the term of this
] Yy
patent is extended or adjusted under 35
U.S.C. 154(b) by 128 days.
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Non-Invasive Pre-Bond TSV Test
(Deutsch and Chakrabarty, TCAD 2014, ITC 2015)

Insulator

C =60fF
R, =0..3kQ
R, =0..10 kQ
TSV
¥ (@) (b) ©)

Substrate

a) Fault-free case: lumped capacitor € = 60 fF
(Rrsy < 1 Q = neglect Rygy )

b) Resistive open fault: R, = 0...3 kQ at the location x
c) Leakage fault: R, =0...10 kQ

Main idea: parametric test for R, and R;

27



Ring Oscillator Configuration

Functional circuitry:

from cl(:)re
to core

92
........

Design-for-Test extension:

TE

o

BY

»
»

to
Mmeasurement
logic

28



Ring Oscillator Configuration

Ty Ty
BY BY
TE TE
OE OE
/O cell } |2 R 1/O cell | ,
- > |I> - lﬂ to B ' : to
0 -________I__ ______ : l measurement SEtR . | measurement
LI logic \‘) logic
from M to from to
core : I core core i i core
LTSV LTSV
| I | :
I \\

-

» Measure difference AT =T, — T, to reduce inaccuracy due to random
process variations

» AT sensitive to defects in TSVs
— AT# if resistive open
— ATT if leakage

29



Using Duty Cycle for Pre-Bond TSV Test
"

Definitions:
Oscillation period: T, = T, + Topf Ton | Torr
. n — _ Ton < >

Duty cycle: D = TonTor? X

t

T()n‘
T
FaUlt-free Leakage fault I— osc B

(GL =0, RO = 0) (GLy b ‘
9 |
T()n‘
D = 0.5 \ ‘ Tosc ¥

Resistive-open D unchanged
fault (R, > 0)

Torr &

30



Regression Model Based on
Artificial Neural Networks

» Objective: determine fault type and size based on

measurements

» Use artificial neural networks (ANNSs):

+ Efficient for complex systems with large number of inputs
— Require sufficient number of samples for training

Generic ANN architecture:
Input layer

Output layer

Hidden layer

Neurons:
aq
@2 F(Ew;a;)
;
an

Common transfer functions:
 Purelinear F(é) =¢

+ Sigmoid F(§) = ———

31



Regression Model Based on ANN

outputs
class_leak
class_open
class_dual

== -
T )

Class-net: classification network to determine fault type
G,-net: function-fitting network to determine G,
R,-net: function-fitting network to determine R,

inputs
K X {Tosc:Tosc,b; D ’ Db}

Inputs: {T,s¢,Toscp, D, Dp 3 measured at K voltage levels

32



Regression Model: Simulation Results

Two sets of training and test data (10,000 MC samples each)

G, from O (fault-free) to 450 uS (strong leakage)

R, from O (fault-free) to 5000 Q (strong resistive open)

33



Evaluation of Class-net

_ outputs
Inputs class_leak
K X {TOSCITosc,err Db} — class_open
class_dual
Evaluation steps:
1. Train Class-net using training sample set

2. Predict fault class using Class-net for evaluation sample set

3. Compare output class with actual (target) class for each sample

34



Evaluation of Class-net

outputs
inputs class_leak
K X {TysciToscp, D, Dy} class_open
class_dual

Confusion matrix:
Target Class

class_leak class_open class_dual

0 class_leak 052% . . 80/ Corr_ect_
g < O 070 prediction
Misprediction
£ class_open 27 9818 135 Bl Misp
a 0.1% 34.4% 0.5%
wld
124
3 class_dual 0

0.0% 0.4%

->Number of mispredictions is relatively small

35



Evaluation of G -net and R,-net

T,,. alone good enough as input parameter?

= Comparison with models using only oscillation period
= All models trained using same training data set

K X {Tosc:Tosc,b; D, Db} %m_) GL K X {TOSC!TOSC,b} _)m_)
VS.

» Performance evaluation metric: mean squared error (MSE)
N
1 2
MSE = ﬁzl(yni — Yt.i)
L=

* y,; target value
* y:; predicted value

36



Evaluation of G, -net

Error histograms of G,-net and G, -net_r at G, = 100 pS.

180 T T T T I I I
- I:l Modelusing T__and D
0sc

- Model using Tosc only

160

140 _ i

120 .

-
o
o
I
1

Qo
o
T

No. of instances

60
40

20 |:|
0

-60 -40 -20 0 20 40 60 80 100
Error of GL uS)

Error = Yp.i = Yt

- G -net more accurate (less spread around zero error)

37



Evaluation of G, -net

= MSE of G,-net and G -net_r for different values of G;,.

800

II'\.Jluadel ujsing ToscJ and D
- Model using Tosc only

700 1

600 [

500 .
Na‘“ 1
= —_ _ 2
oy 400 1 MSE= § Ipi = Yea)
% N
= -

300 ] - M

200 .

N HI HI HI HI

0
0 50 100 15 200 400
G, (nS)

- using D as additional input increases diagnosis accuracy for
weak leakage (<100 pS)

38



Multiple vs. Single V44

Do we need to test at multiple voltage levels?

MSE of G -net MSE of RO net

x 10

600 T T T T T T I T T 6

Model using multiple V{1d I I l:lModeI using multlple V
- Model using single Vdd - Model using single V

500 i 5

400 B 4+
Ni% 300 M A 3 ]
0 0] M _
= =

200 2L

100} 1+ |

0 w 0 !_\I HI I
0 50 100 150 G2?DS 250 300 350 400 500 1000 1500 2000 5)500 3000 3500 4000 4500
ik
L

- improved diagnosis accuracy using multiple voltage levels
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Conclusions

3D fabrication and assembly steps (TSVs, alignment,
bonding, thinning, etc.) lead to unique defects

Known test methods can be utilized (extended) for some
problems

= Post-bond test access, IEEE P1838
Out-of-the-box thinking needed for other test challenges

= Pre-bond testing (KGD, TSV testing, die logic testing)
= Cost modeling (when and what to test)



Traffic Lights

KGD,
Pre-bond test,
Probing

Post-bond test
access, DfT,
optimization,
standards

2.5D: interposer,
microbumps, RDL

Test flows

Defect

understanding,
test content

Thermal-aware
testing?

Power integrity?

Clock-domain
crossings?

BIST?

Repair?

Test compression”

Debug?




Target TSVs in Production Test and
Volume Diagnostics?

o T = - VOLUME DIAGNOSTICS T W




TSV Redundancy?




Yield Learning for a 3D Stack?

1




