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SUMMARY & CONCLUSIONS 

A new model and solution methods are introduced to find 

the optimal time of preventive replacement of a working 

object.  Most models consider only the replacement costs and 

the distribution of the time to failure.  Very few models take 

the random termination time of ongoing projects into account, 

when project interruption results in additional cost.  

Traditionally, the object is replaced upon failure.  Otherwise it 

is replaced at the earlier (replace first) or later (replace last) 

occurrence of either the termination of the project or the 

scheduled replacement time.  The long-term optimum models 

were formulated in [1] and the solution methodology was 

illustrated with examples. 

This paper presents the single-cycle counterpart of these 

models which are extended to include repair costs of 

repairable failures, generated revenues and salvage value of 

the unit in a one-cycle cost per unit time minimization model.  

The models are further extended to the case when the unit 

repeats identical projects in time and the terminating time of 

the ongoing project or that of a given number of projects is 

considered in the replace next model, which is also 

formulated.  Conditions are given for the existence of finite 

optima, and examples illustrate the models and solutions. 

A comparison of the alternative models discussed in this 

paper has an interesting conclusion.  Consider the derivatives 

ℎ1(𝑇), ℎ2(𝑇) and ℎ3(𝑇) of the objective functions of the 

classical, “replace first’, “replace last” models, respectively.  

They all have an identical first term, which is constant if all 

distributions are exponential and strictly increasing if at least 

one distribution is Weibull, which is the case if the irreparable 

failure is Weibull. In addition to strictly increasing, it is zero at 

𝑇 = 0 and tends to infinity if  𝑇 → .  The second term of  

ℎ2(𝑡) is always larger than the second term of ℎ3(𝑡), so the 

solution of ℎ2(𝑡) = 0 is larger than the solution of ℎ3(𝑡) = 0.  

The second term of ℎ1(𝑡) is between those of ℎ2(𝑡) and ℎ3(𝑡), 

so the solution of the first order condition of the classical 

model is between the solutions of the other two first order 

conditions.  This has a sense. If “replacement last” model is 

used, then the replacement is often done after time T, when 

failure occurs or working cycle terminates, so the actual 

replacement is often performed after time T.  However, in the 

case of “replacement first” the actual replacement often occurs 

before time T, when either working cycle terminates or unit 

fails.  That is, in using “replacement last” policy the value of T 

underestimates the actual replacement time, while in the case 

of “replacement first” the value of T overestimates it.  If the 

classical model is used, then replacement is done at time T 

unless failure occurs, no project termination time is 

considered. 

The classical model, “replacement first” and “replacement 

last” models have a simple closed form objective function, so 

they can be solved by simple computer methods.  The most 

frequently used procedures are discussed in many textbooks 

on computer methods, for example in [2].  In the general case 

the “replacement next” model needs simulation to find its 

optimum, closed form representation of its objective function 

is only possible in special cases. 

1 INTRODUCTION 

The uninterrupted working condition of an object or a 

whole system can be guaranteed by appropriate maintenance 

and replacement planning.  If non-repairable failure occurs, 

then failure replacement is performed, which is usually more 

expensive than doing preventive replacement.  Before 

replacements, repairable failures might occur, revenue is 

generated, and the replaced items still have certain salvage 

values.  These factors also have to be included in any optimum 

model. 

There are two major types of models discussed in 

literature.  If the working cycle repeats until infinity without 

any change, then the renewal theory is used to formulate the 

objective function, which is the long-term cost per unit time.  

If technology and the environment change, then a short-term 

optimum model is constructed minimizing the cost per unit 

time in a single cycle.  These two types of models are used 

very often in practice and computer software packages are 

available for their implementation. 

There are several surveys discussing the most frequently 

applied model variants [3][4][5][6][7][8][9], and the most 

appropriate model selection depends on the actual 

circumstances the decision maker is faced with. 

In most models there is no attention given to ongoing 



projects the system is involved in and project interruptions for 

performing maintenance or replacements.  Recently [1] 

introduced two long-term models. In the “replacement first” 

policy the unit is replaced before failure either at the end of a 

random working cycle or at the scheduled preventive 

replacement time, whichever comes first.  If the “replacement 

last” policy is applied, then replacement is performed either at 

the end of a random working cycle or at the scheduled 

preventive replacement time, whichever comes last.  The 

mathematical models were formulated and solution algorithms 

were suggested to find the optimal decisions. 

In this paper the one-cycle variants of the models of [1] 

are constructed with slight extensions including repair costs of 

repairable failures, revenue generation as well as the salvage 

values of the unit upon replacement.  In the next section the 

classical model will be examined with extensions.  Section 3 

discusses the replacement first model, and the replacement last 

model will be the subject of Section 4.  If the unit performs 

projects repeatedly and replacement is done when the ongoing 

project terminates just after the scheduled replacement time, 

then the above models have to be adjusted accordingly 

resulting in “replacement next” concepts.  That is the subject 

of Section 5. 

2 THE CLASSICAL MODEL 

Let �̃� denote the time to failure as a Weibull variable with 

CDF 𝐹(𝑥), pdf 𝑓(𝑥) reliability function �̅�(𝑥) and failure rate 

(𝑥).  The preventive and failure replacement costs are cp and 

cf, where we assume that cf > cp.  It is also assumed that there 

are K types of repairable failures with failure rates �̅�𝑘(𝑡) and 

expected number of failures �̅�𝑘(𝑡) in interval [0,t].  The 

revenue generated by the unit in a single working cycle is V, 

and the salvage value of the unit at time t is S(t).  The cost per 

unit time in any interval [0,t] is given as 

𝑐𝑝 + ∑ 𝑐𝑟𝑘�̅�𝑘(𝑡)𝐾
𝑘=1 − 𝑆(𝑡) − 𝑒𝑉𝑡

𝑡
                    (1) 

if preventive replacement is performed at time t, where crk is 

the cost of repairing failure of type k and eV is the expected 

utility generated by the unit in a unit time period 𝑒 = 𝐸(1/�̃�) 

with �̃� being the random length of a project.  If failure 

replacement is done, then the term cp in the numerator is 

replaced with cf.  If preventive replacement is scheduled at 

time T, then the expected cost per unit time in a cycle can be 

given as 

𝐻1(𝑇) =
𝑐𝑝 + 𝑄(𝑇)

𝑇
�̅�(𝑇) + ∫

𝑐𝑓 + 𝑄(𝑡)

𝑡

𝑇

0

𝑓(𝑡)𝑑𝑡        (2) 

 which is then minimized, where: 

𝑄(𝑡) = ∑ 𝑐𝑟𝑘�̅�𝑘(𝑡) − 𝑆(𝑡) − 𝑒𝑉𝑡

𝐾

𝑘=1

                 (3) 

collects all costs excluding replacement costs.  Assuming 

Weibull failure rates with parameters �̅�𝑘 and �̅�𝑘 for failure 

type k, then the derivative of 𝐻1(𝑇) has the same sign as 

ℎ1(𝑇) = [(𝑐𝑓 − 𝑐𝑝)𝜌(𝑇) + ∑ 𝑐𝑟𝑘(�̅�𝑘 − 1)
𝑇�̅�𝑘−1

�̅�𝑘

�̅�𝑘

𝐾

𝑘=1
] −       

 [
𝑐𝑝 + 𝑇𝑆′(𝑇) − 𝑆(𝑇)

𝑇
]                                             (4) 

It is a natural assumption that S’(T) is bounded, S() = 0 and 

S(0) < cp, so ℎ1(0) = − and ℎ1() = .  Therefore there is 

always a nonzero, finite optimum, which can be obtained by 

standard methods. 

3 THE “REPLACE FIRST” APPROACH 

In formulating the objective function we have to consider 

the random time to failure �̃�, the random length of the 

project �̃�, and the scheduled preventive maintenance time T, 

which have 6 different permutations: 

1. �̃� < 𝑇 < �̃� 

2. �̃� < �̃� < 𝑇 

3. �̃� < �̃� < 𝑇 

4. �̃� < 𝑇 < �̃� 

5. 𝑇 < �̃� < �̃� 

6. 𝑇 < �̃� < �̃� 

The six permutation cases are illustrated in Figure 1. 

Figure 1. The possible six permutations of  �̃�, �̃�, 𝑇 

 

In cases 1 and 2 the cycle length is �̃�, in cases 3 and 4 it is 

�̃� and in the last two cases the cycle length is T.  Therefore the 

expected cost per unit time has three major terms 

𝐻2(𝑇) = ∫ ∫
𝑐𝑝 + 𝑄(𝑦)

𝑦
𝑓(𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦

∞

𝑦

𝑇

0

+                     

∫ ∫
𝑐𝑝 + 𝐴 + 𝑄(𝑇)

𝑇
𝑓(𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦

∞

𝑇

 

∞

𝑇

+           

∫ ∫
𝑐𝑓 + 𝐴 + 𝑄(𝑥)

𝑥
𝑓(𝑥)𝑔(𝑦)𝑑𝑦𝑑𝑥

∞

𝑥

𝑇

0

                  

= ∫
𝑐𝑝 + 𝑄(𝑦)

𝑦
�̅�(𝑦)𝑔(𝑦)𝑑𝑦 +

𝑇

0

                            



𝑐𝑝 + 𝐴 + 𝑄(𝑇)

𝑇
�̅�(𝑇)�̅�(𝑇) +                                

∫
𝑐𝑓 + 𝐴 + 𝑄(𝑥)

𝑥
𝑓(𝑥)�̅�(𝑥)𝑑𝑥

𝑇

0

                     (5) 

where g(t) and �̅�(t) are the pdf and reliability function of �̃�, 

furthermore A is the project interruption cost. 

The derivative of 𝐻2(𝑇) has the same sign as 

ℎ2(𝑇) = [(𝑐𝑓 − 𝑐𝑝)𝜌(𝑇) + ∑ 𝑐𝑟𝑘(�̅�𝑘 − 1)
𝑇�̅�𝑘−1

�̅�𝑘

�̅�𝑘

𝐾

𝑘=1

] −          

[
𝑐𝑝 + 𝐴 + 𝑇𝑆′(𝑇) − 𝑆(𝑇)

𝑇
+ 𝐴�̅�(𝑇)]                (6) 

by assuming Weibull failure rates for the repairable failures 

and �̅�(𝑇) is the “failure rate” (𝑔(𝑡)/�̅�(𝑡)) of the length of the 

project.  If S’(T) is bounded, S(0) < cp and S() = 0, then 

ℎ2(0) = − and if in addition lim𝑇→∞ ℎ2(𝑇) > 0, then there 

is a finite nonzero optimum. 

4 THE “REPLACE LAST” APPROACH 

Similarly to the previous case we have the six 

permutations of  �̃�,  �̃�, T.  In case 1 the cycle length is T, in 

cases 2, 3, 4, and 5 the cycle length is �̃�, and in case 6 it is  �̃�.  

So the expected cost per unit time in a cycle can be given as 

follows: 

𝐻3(𝑇) = ∫ ∫
𝑐𝑝 + 𝑄(𝑦)

𝑦
𝑓(𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦

∞

𝑦

∞

𝑇

+                       

∫ ∫
𝑐𝑝 + 𝐴 + 𝑄(𝑇)

𝑇
𝑓(𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦

∞

𝑇

 

𝑇

0

+              

∫ ∫
𝑐𝑓 + 𝐴 + 𝑄(𝑥)

𝑥
𝑓(𝑥)𝑔(𝑦)𝑑𝑦𝑑𝑥

∞

𝑥

∞

0

+               

∫ ∫
𝑐𝑓 + 𝐴 + 𝑄(𝑥)

𝑥
𝑓(𝑥)𝑔(𝑦)𝑑𝑦𝑑𝑥

𝑥

0

𝑇

0

                    

= ∫
𝑐𝑝 + 𝑄(𝑦)

𝑦
�̅�(𝑦)𝑔(𝑦)𝑑𝑦

∞

𝑇

+                              

𝑐𝑝 + 𝐴 + 𝑄(𝑇)

𝑇
�̅�(𝑇)𝐺(𝑇) +                              

∫
𝑐𝑓 + 𝐴 + 𝑄(𝑥)

𝑥
𝑓(𝑥)�̅�(𝑥)𝑑𝑥

∞

0

+                     

∫
𝑐𝑓 + 𝐴 + 𝑄(𝑥)

𝑥
𝑓(𝑥)𝐺(𝑥)𝑑𝑥

𝑇

0

                  (7)  

Simple calculation shows that 𝐻3
′ (𝑇) has the same sign as 

ℎ3(𝑇) = [(𝑐𝑓 − 𝑐𝑝)𝜌(𝑇) + ∑ 𝑐𝑟𝑘(�̅�𝑘 − 1)
𝑇�̅�𝑘−1

�̅�𝑘

�̅�𝑘

𝐾

𝑘=1

] −        

[
𝑐𝑝 + 𝐴 + 𝑇𝑆′(𝑇) − 𝑆(𝑇)

𝑇
− 𝐴

𝑔(𝑇)

𝐺(𝑇)
]             (8) 

where G(t) is the CDF of  �̃�.  If it is exponential or Weibull, 

then (𝑔(𝑡)/𝐺(𝑡)) converges to zero as T →  and to infinity 

as T → 0.  Thus ℎ3(𝑇) converges to infinity as T → , so there 

is always a finite optimum which is positive if the second term 

of (8) has a positive limit at zero. 

5 THE “REPLACE NEXT” APPROACH 

In this case we assume that the unit performs identical 

projects repeatedly.  If it breaks down, then it is replaced 

immediately, otherwise we can wait until the scheduled 

preventive replacement time arrives and the unit is replaced 

when the ongoing project terminates.  This termination time 

depends on T in contrary to the distribution of  �̃� as in the 

previous two cases.  In this case, however, let 𝑍𝑖+1 denote the 

termination time of the ongoing project, then its CDF is given 

as 

𝐺𝑇(𝑡) = ∑ 𝑃(�̃�1 + ⋯ �̃�𝑖 < 𝑇 < �̃�1 + ⋯ + �̃�𝑖 + �̃�𝑖+1 < 𝑡)

∞

𝑖=0

 (9) 

where for i = 0, �̃�1 + ⋯ + �̃�𝑖 = 0.  The pdf of 𝑍𝑖 is the i-fold 

convolution of g(t) which can be denoted by gi(t), so 

𝑔𝑖(𝑡) = ∫ 𝑔𝑖−1(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏

∞

0

                        (10) 

can be obtained recursively by numerical integration. 

The defining domain of GT(t) is shown in Figure 2, 

Figure 2. Domain defining GT(t) 

 

and since gi(t) and g(t) are independent, for (𝑡 ≥ 𝑇) 

𝐺𝑇(𝑡) = 𝐺(𝑡) − 𝐺(𝑇) + ∑ ∫ ∫ 𝑔𝑖(𝑥)𝑔(𝑦)𝑑𝑦𝑑𝑥

𝑡−𝑥

𝑇−𝑥

𝑇

0

∞

𝑖=1

                   

= 𝐺(𝑡) − 𝐺(𝑇) + ∑ ∫ 𝑔𝑖(𝑥)[𝐺(𝑡 − 𝑥) − 𝐺(𝑇 − 𝑥)]𝑑𝑥

𝑇

0

∞

𝑖=1

     

= 𝐺(𝑡) − 𝐺(𝑇) + ∫ 𝐻(𝑥)[𝐺(𝑡 − 𝑥) − 𝐺(𝑇 − 𝑥)]𝑑𝑥

𝑇

0

  (11) 

where 



𝐻(𝑥) = ∑ 𝑔𝑖(𝑥)

∞

𝑖=1

.                                   (12) 

The “replacement last” model can be applied with G(t) 

being replaced by GT(t) and in the objective function only 

cases 4, 5, and 6 are feasible. The objective function becomes 

𝐻4(𝑇) = ∫
𝑐𝑓 + 𝑄(𝑥) + 𝐴

𝑥
𝑓(𝑥)𝑑𝑥�̅�𝑇(𝑇)

𝑇

0

+                      

∫
𝑐𝑓 + 𝑄(𝑥) + 𝐴

𝑥
𝑓(𝑥)�̅�𝑇(𝑥)𝑑𝑥

∞

𝑇

+                      

∫
𝑐𝑝 + 𝑄(𝑦)

𝑦
�̅�(𝑦)𝑔𝑇(𝑦)𝑑𝑦

∞

𝑇

                        (13) 

Since �̅�𝑇(𝑥) and gT(y) depend on T, no simple analytic 

solution can be obtained in general. 

We can also consider a simplified version of this model, 

when  �̃� is replaced by the termination time of a given 

number, N, of consecutive projects.  Then G(t) has to be 

replaced by the CDF of gN(t), and the two models can be 

applied without further changes. 

6 EXAMPLE 

Consider an object with a Weibull non-repairable failure 

and one type of exponential repairable failure with parameters 

𝛽 = 2, 𝜂 = 1, and 𝜆̅ = 1.  The length of the project is also 

exponential with 𝜆 = 2.  The utility generation is eV = 200 per 

unit time and the salvage value of the object after t time 

periods is 𝑆(𝑡) = 40𝑒−𝑡 .  The failure and preventive 

replacement costs are cf = 200 and cp = 50, respectively, and 

furthermore the repair cost at each repairable failure is cr1 = 

20.  The project interruption cost is A = 5. 

First we illustrate the replace last and replace next 

models.  In this case: 

𝑓(𝑡) = 2𝑡𝑒−𝑡2
,   𝐹(𝑡) = 1 − 𝑒−𝑡2

,   �̅�(𝑡) = 𝑒−𝑡2
          

𝜌(𝑡) = 2𝑡                                                                                

�̅�1(𝑡) = 𝑡                                                                                
𝑄(𝑡) = 20𝑡 − 40𝑒−𝑡 − 200𝑡 = −180𝑡 − 40𝑒−𝑡            
𝑔(𝑡) = 2𝑒−2𝑡 ,   𝐺(𝑡) = 1 − 𝑒−2𝑡 ,   �̅�(𝑡) = 𝑒−2𝑡 .            

Figure 3 shows the shape of the objective function of 𝐻3(𝑇) 

of the replace last model, where the optimal solution is 

𝑡∗ = 0.20. 
In examining the replace next model, notice first that if  �̃�𝑖 

is exponential with 𝜆 = 2, then �̃�1 + ⋯ + �̃�𝑖 is gamma with 

𝛼 = 𝑖 and 𝜆 = 2 with pdf: 

𝑔𝑖(𝑡) =
𝜆𝑖

Γ(𝑖)
𝑡𝑖−1𝑒−𝜆𝑡                                        

so 

𝐺𝑇(𝑡) = (1 − 𝑒−𝜆𝑡) − (1 − 𝑒−𝜆𝑇) +                          

∫ 𝜆[1 − 𝑒−𝜆(𝑡−𝑥) − 1 + 𝑒−𝜆(𝑇−𝑥)]𝑑𝑥

𝑇

0

           

= 1 − 𝑒−𝜆(𝑡−𝑇)                                                                

since 

∑ 𝑔𝑖(𝑡)

∞

𝑖=1

= 𝜆𝑒−𝜆𝑡 ∑
(𝜆𝑡)𝑖−1

(𝑖 − 1)!

∞

𝑖=1

= 𝜆 

and so in (13), 

𝑔𝑇(𝑡) = 2𝑒−2(𝑡−𝑇)  and  �̅�𝑇(𝑡) = 𝑒−2(𝑡−𝑇)  

Figure 4 illustrates 𝐻4(𝑇) and the optimal solution is 𝑡∗ =
0.07. 

Figure 3.Replace last cost function H3(t) 

Figure 4. Replace next cost function H4(t) 

 

We also notice that with exponential repairable failures 

the replace first model cannot be applied, since the first 

integral term of (5) becomes infinity.  In comparing 

replacement first and last models we now assume that the 

length of a project is also Weibull with parameters �̅� = 2,  �̅� =
2, keeping all other distributions and data unchanged. In this 

case 

𝑔(𝑡) =
2𝑡

4
𝑒−

𝑡2

4 ,   𝐺(𝑡) = 1 − 𝑒−
𝑡2

4  and  �̅�(𝑡) = 𝑒−
𝑡2

4 . 

Figures 5 & 6 show the shapes of  𝐻2(𝑇) and 𝐻3(𝑇) and the 



optimal solutions are 𝑡2
∗ = 0.23 and 𝑡3

∗ = 0.13. 

Figure 5. Replace first cost function H2(t) 

Figure 6. Replace Last cost function H3(t) 
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