
Ridgetop Group Develops Fast and Accurate Prognostic Algorithm  
to Reduce Costs of Aviation Electronics Maintenance 

Adaptive Remaining Useful Life Estimator™ ARULE™ 

The aviation industry has long been plagued by the need to keep numerous spare line replaceable units (LRUs) 
on hand because the state of the art for “predicting” component failures and performing preventive maintenance 
has been based on general statistical methods. The most common method, based on mean time between failures 
(MTBF), is costly because it schedules pre-emptive replacement of LRUs based on the average of a broad range 
of time-to-failure (TTF) records rather than on the actual condition of assemblies and components. As a result, 
LRUs that might still be good are replaced arbitrarily, and assemblies that have had intermittent failures with no 
known cause are replaced rather than repaired on the flight line. 

Condition-Based Maintenance Breakthrough 

Electronic prognostics leader Ridgetop Group has developed ARULE™, Adaptive Remaining Useful Life 
Estimator™ (patent pending), the first prognostic algorithm that provides a fast, accurate remaining useful life 
(RUL) estimate for use in integrated electronic prognostic systems in condition-based maintenance (CBM) 
applications.  

ARULE employs memory and calculation methods that are so efficient that an accurate RUL estimate can be 
produced on a system component or assembly in less than 200 microseconds. This breakthrough high speed is 
particularly important in a system that has thousands of different pieces of equipment for which accurate health 
information needs to be obtained in a very short period of time, such as a net-centric CBM system for multiple 
squadrons and groups in a wing.  

How ARULE Works With ePHM Data 

An integrated electronic prognostic and health management (ePHM) system processes data collected from 
sensors to produce RUL estimates, which are then put into a CBM system. ARULE is currently designed for use 
in a system component or assembly subject to fatigue damage. ARULE processes data (real-time or otherwise) 
that represent either a fault-to-failure progression (FFP) or a degradation fault profile (DFP) signature. An FFP or 
DFP signature represents a physical state, such as temperature, noise, voltage, or current, that exhibits a 
measurable change related to the effects of damage. Some FFP examples are leakage current, ripple voltage, 
fault counts, and increase in frequency. Some DFP examples are battery charge, loss of transmission power, fuel 
capacity, and decrease in frequency. When ARULE accepts FFP signature data

1
, it adapts an FFP model to the 

data, then uses the adapted model to produce RUL estimates. The models and an adaptive-reasoning processor 
have been designed and implemented in both the MATLAB

® 
and Java™ programming languages. 

Generic fault-to-failure models can be used as is, or modified, or one or more new models can be defined. Data 
sets can be linked to a model-processor pair. ARULE has an application programming interface (API) to let an 
application specify a model and invoke ARULE. ARULE then adapts a model to the data, and uses the adapted 
model to produce RUL estimates with increasing accuracy. ARULE has been tested with lithium-ion battery health 
data, as described in this article, power supply filter capacitor ripple voltage data, and data from ball grid array 
(BGA) solder joint faults in printed circuit boards.  

ARULE Approach 

The ARULE approach requires a diagnostic sensor to obtain data that is above a predefined “good-as-new” floor 
and below a “failed” ceiling. 
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Fault-to-Failure Progression Signature  

The progression of data from a floor to a ceiling is defined as a fault-to-failure progression (FFP) signature. The 
FFP profile can be modeled to have beginning and end times, and floor and ceiling magnitudes. As data is 
presented to ARULE, the model is adjusted to account for changes in data position, velocity, and acceleration. 
After the model is adjusted for a received data point, it is used to produce an RUL estimate.  

Degradation Fault Profile Signature  

ARULE recognizes and uses a degradation fault profile (DFP) signature, such as that represented by decreasing 
power output of a system. ARULE handles DFP signature data in a similar manner to the FFP examples 
presented in this article, the difference being that FFP signatures generally increase in magnitude while DFP 
signatures generally decrease in magnitude. 

Open Architecture 

ARULE uses an open architecture application programming interface (API) to do the following: (1) let a model be 
defined or used; (2) accept input data and output RUL estimates and an adapted model (see Figure 1). 

  

Figure 1: API to get an ARULE model 

Exponential Functions and Fatigue Damage 

Fatigue damage phenomena can be modeled using single exponential functions, double (or higher) exponential 
functions, or as compound exponential functions.  

Straight-line Representations of Models 

Appropriate logs of exponential functions result in one or more straight lines, which in turn can be used to 
approximate real data. Some examples are Bode plots, square-law diode equation, and electron/hole mobility. 
Manipulating the straight-line representations of models is the equivalent of manipulating the models. 



ARULE Examples Using Real Data 

NASA Battery Health Study 

In 2008, a NASA team
2
 headed by Kai Goebel, Ph.D., examined PHM issues using battery health management of 

Gen 2 cells, with an 18650-size lithium-ion cell as a test case. NASA identified an FFP signature as being the 
electrolyte resistance plus the charge transfer resistance (RE + RCT) and a DFP signature as being the battery 
charge; NASA defined a 30% fade in capacity as a failed battery state; and verified there was a linear 
correspondence between capacity, C/1, and the (RE + RCT) impedance. 

ARULE Modeling of Battery Health Data 

Ridgetop used the NASA impedance data to create an ARULE FFP model (pink plot shown in Figure 2) that had 
a 441-day (63-week) predicted failure date. 

 

Figure 2: NASA impedance data (circled dots) was used to create ARULE model (diamonds) 

The data was processed point-by-point by ARULE, and the returned RUL estimates were saved and plotted 
versus time (Figure 3). The accuracy of each returned RUL estimate was calculated and plotted, as shown in 
Figure 4. 
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Figure 3: RUL estimates produced by ARULE for the battery resistance data 

Figure 4 shows that the RUL estimates from ARULE converge, and the error in the RUL predictions made after 
about 180 days is less than 5% (20 days or less), which is very accurate given a 28-day measurement period. In 
Figure 3 note the convergence from a 441-day predicted failure of the original model to the actual failure on the 
420th day.  

 

Figure 4: Accuracy of ARULE estimates; each black dot is the percent error between predicted time and actual 
failure time; actual failure time is shown by red dot at 420 days 

Ridgetop then used the same ARULE model to process extrapolated NASA data that diverges from the model as 
shown in Figure 5: the non-adapted model predicts failure day in 441 days, but the data reaches the failure 
threshold much slower: 504 days. The extrapolated data diverges from the model at about 336 and as shown in 
Figure 6, ARULE detected the divergence and adjusted model accordingly on day 364 and predicted failure on 
day 504. 



 

Figure 5: Extrapolated NASA data using the same ARULE model 

 

Figure 6: RUL estimates, showing the model correction automatically occurring at day 3290 



ARULE Operational Characteristics 

ARULE accuracy has been successfully proven using ripple voltage measurements, opto-isolator gain, counts of 
solder ball intermittent faults, and battery resistance. valuations indicate both as equally valid. The primary reason 
for this level of versatility is the ARULE engine has been designed and developed to work independently of the 
type of data and the units of measure it is processing. 

 ARULE is accurate because the model is adapted to the data as each data point is processed.  

 ARULE is a fast because of the compactness of the model, which incorporates past history and the 
predicted future. 

 ARULE is cognizant that the data can exhibit both degradation and healing, and that the rate of 
accumulated damage as exhibited by the data can increase, remain the same, or decrease. 

 ARULE is designed to favor early rather than late projected end-of-life estimates. 

Conclusion 

The use of effective electronic prognostics and health management (ePHM) methods in condition-based 
maintenance (CBM) systems is a priority in the industry, but as yet ePHM has seen little on-board 
implementation. Prognostics such as ARULE in CBM will enable “just-in-time” maintenance, which lowers costs 
because it enables the operator to purchase replacements only when individual assemblies or components are 
known to be nearing the end of life, eliminating the need to maintain a large inventory. Prognostics also increases 
safety and saves money by avoiding failures and unscheduled down time that can affect critical missions. 

ARULE is a fast, accurate remaining useful life estimator for CBM applications and is currently evaluated as being 
at Technology Readiness Level (TRL) of 6. Current development plans call for ARULE to be at TRL 7 by the 
second quarter of 2010 after field testing by two major government prime contractors.  


