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Electrical systems, such as those consisting of electrical power driving motors and actuators, are varied 

and include industrial, aerospace, and automotive applications. These power systems are critical and must 

provide stable operating voltages for various modules found throughout the host system, including 

electromechanical actuators (Goodman et al., 2007), CPU-based control systems, and widely varying 

loads. Operating temperatures can vary as well, with vibration and mechanical shock conditions adding 

further stress and degradation of components in the power system. A key advantage of electronic 

prognostics is the monitoring of health of a power system in these critical systems. With prognostics, 

impending failure can be detected and mitigated. In addition, the prognostics and health management 

(PHM) system can help optimize the support logistics and reduce costs.  

In this paper, an overview of signature-based PHM technology to detect anomalies and prognostic 

reasoning is presented: A signature is extracted from condition-based data and is called a fault-to-failure 

progression (FFP) signature. Thereafter, a representative PHM system that extracts and processes 

dynamic degradation signatures for a critical DC regulated power system is described. The hardware and 

software integration involved with the addition of advanced PHM functionality to a host system is 

discussed, along with resulting output display and data that can be used to provide dynamic state-of-health 

(SoH) and remaining useful life (RUL) estimates.  

1. Introduction 

Prognostic health management (PHM) systems can support the timely mitigation of faults found in complex 

systems before catastrophic failures occur. Complex systems often incorporate data buses, which can be 

non-invasively monitored to extract condition-based fault-to-failure progression (FFP) signatures which can 

be processed to detect degradation, and used to provide estimates of remaining useful life (RUL) and 

state-of-health (SoH) of the system (Goodman, 2007, pp. 1902-1906). To illustrate this capability, this 

paper presents results from a Model-based Analysis and Prognostic Reasoner (MAPR) that Ridgetop 

Group, Inc. is developing for a NASA-sponsored (U.S. National Aeronautics and Space Administration) 

Small Business Innovation Research (SBIR) program (contract NNX11CA04C, 12 June 2011 to 11 June 

2013).  

1.1 Benefits of PHM-enabled systems 
The motivations for PHM-enabling systems include the following: (1) prognostics provides advanced 

warning of impending failure conditions on critical systems and avoidance of expensive system down-time; 

(2) Physical evidence of degradation is the basis for maintenance on the system, not an arbitrary time 

interval; (3) PHM can reduce support costs through optimized timing of service and parts replacement; and 

(4) Autonomic Logistics Information Systems (ALIS) can be established, placing spare parts and 

provisions where needed. 

Diagnostics indicates the state of the system to perform its designed function, while prognostics predict 

when a system is likely to fail. Predictive diagnostics incorporates sensors (existing or additive), data 

collection routines, and algorithms that provide state-of-health (SoH) and remaining useful life (RUL) of the 



system under observation. Wear-out conditions can vary widely, depending on the environment in which 

the systems are placed so evidence-based indications are valuable. Health Management, in turn, takes the 

prognostics and utilizes the predictive capabilities to schedule maintenance when the system is taken off 

line. This reduces the overall life cycle cost of the system. 

1.2 Complex systems 
Systems can assume a multi-level hierarchy spanning at least five levels: (1) IC (or die); (2) components; 

(3) boards; (4) module/assembly; (5) system and system-of-systems: a fault can occur in any level and 

propagate into a system failure. From a practical perspective, state information is extracted as non-

intrusively as possible utilizing existing sensors and data measurements. 

1.3 Illustrative example of a complex system 
Figure 1 is an illustrative example of a complex system which is PHM-enabled and which consists of the 

following: (1) a 24 VDC switch-mode power supply (SMPS); (2) a brushless DC motor (BLDC); and (3) 

PHM executable software. There is a single DC voltage output sensor and three AC current sensors – all 

non-invasive (see Figure 2). Data are acquired and placed onto a data bus, and algorithms are used to 

condition and process the data to extract multiple FFP signatures (one for each fault mode): the power 

supply has one fault mode (loss of filtering capacitance); the servo control for the motor has six fault 

modes (the six power switching transistors used to produce the motor currents); and the motor load has 

one fault mode (excessive load current). The FFP signatures are then processed by Kalman Filter 

algorithms to remove noise. For each set of captured data (time-stamped data), the multiple FFP 

signatures are then processed by an advanced time-to-failure (ATTF™) kernel program which adapts FFP 

signature models to the input data. Each adapted FFP signature model is used to produce RUL estimates 

and, in turn, the RUL estimates are used to produce SoH estimates. The RUL and SoH results are further 

processed to identify which fault mode is likely to cause the system to fail first: smallest RUL and smallest 

SoH, each having an associated fault mode. An application front-end program provides graphical user 

interface (GUI) support for PHM control and visualization of results. The phase currents are sampled 

during the positioning of the motor. The algorithms do not assume that any detected fault is independent of 

or dependent on any other detected fault. 

2. Condition-based FFP signatures for anomaly and prognostic reasoning 

When components degrade from a state of no damage to a failed state, the electronic device or assembly 

that is failing typically produces one or more condition-based FFP signatures.  

2.1 Example FFP signature 

One example, seen in Figure 2, is the well-known voltage ripple signature increase as a power supply filter 

fails. The data shown came from a power supply testbed that was fault-injected by automatically stepping 

changes in the filter capacitance: the original, noisy and stepped data (black) was signal-conditioned (blue) 

before processing: (1) ripple voltage measurements below a “floor” value (green) are defined as “no 

detectable degradation;” (2) measurements between the defined floor value and a “ceiling” value (red) are 

defined as “degraded;” and (3) measurements at or above the defined ceiling value are defined as “failed” 

and the power supply has reached the effective end of its useful life. Other signatures have been identified 

and characterized, including power supply feedback failure; motor/actuator failure evidenced by increase 

friction on the stator; metal-oxide field-effect transistor (MOSFET) failure in a motor winding circuit; and 

transmission line failure because of kinking and/or crushing. The challenge is to use and/or develop a non-

invasive means to capture data from which at least one FFP signature can be extracted for PHM. 

FFP signature data is normalized and made dimensionless to facilitate defining and using FFP signature 

models to support many applications. Eq(1) is used to convert FFP signature data into ratios of normalized 

values, such as those seen in Figure 2. 

VR_FFP = (VR – VRNOM)/VRNOM                   (1) 

Where VR_FPP is the normalized, dimensionless FFP signature, VR is the measured ripple voltage, 

and VRNOM is the nominal, non-degraded value of the ripple voltage. 

 



 

Figure 1: Architectural block diagram - testbed with executable PHM software 

2.2 FFP Signature modeling 
Referring to Figure 2, the creation of an FFP signature model is straightforward: (1) create a representative 

curve using a set of normalized, dimensionless FFP signature data; (2) divide the time between the start of 

detectable degradation and failure into three periods having an approximate ratio of 8:7:5; (3) measure the 

amplitudes at those times; and (4) specify the resulting four model points (the red circles on the plots in 

Figure 2) using an application programming interface (API) header file. In modeling, exact times and 

amplitudes are not required because an ATTF program kernel adapts the FFP model as data are received 

and processed. 
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Figure 2: Example FFP signature – ripple voltage increases as power supply filter fails 



2.3 Noise and Kalman Filtering 
Sampled data is very noisy, especially if the ripple voltage of an SMPS is sampled, for example, thousands 

of times in one millisecond once every 30 minutes over a time span in the tens of thousands of minutes. 

After conditioning bus data into a single data point per sample, Kalman Filtering is used to remove noise to 

produce “clean” FFP signatures, such as the blue-dotted plot in Figure 2 of the FFP signature data after 

conditioning, filtering, and normalizing. 

2.4 Multiple sensors and fault modes 

Referring to Figure 3, multiple non-invasive, existing sensors are used to measure the three phase 

currents from which seven FFP signatures are extracted for the following fault modes: increase in on-

resistance of any one of the six power-switching MOSFETs (six FFP signatures), and an increase in 

friction or weight loading on motor (one FFP signature). An 8
th
 FFP signature for the loss of filtering 

capacitance is extracted from a non-invasive monitoring of the DC voltage of the power supply. 

 

  

Figure 3: Simplified diagram of a power supply and brushless DC motor  

3. Advanced-Time-to-Failure (ATTF) program kernel 

In Figure 2, it is seen that the defined FFP signature model (the four circles) does not match the data. For 

each data point, except the first, received by the ATTF kernel program, the FFP signature model is 

adapted to the data. The adapted FFP model is then used to project a probable time-to-failure (TTF) – very 

much like Extended Kalman Filtering. The estimated TTF and the data point time (DPT) are then used to 

calculate an estimated RUL using Eq(2) and an estimated SoH value using Eq(3). 

RUL = (TTF – DPT)                                                                                                                                   (2) 

SoH = [1 – (FFPAMPL) / (FFPAMPL_FAIL – FFPAMPL_GOOD)] * 100                                                                   (3) 

Where FFPAMPL is the amplitude of the data (the blue-dotted plot in Figure 2), FFPAMPL_FAIL and 

FFPAMPL_GOOD are defined by the FFP signature model. 

3.1 FFP signature processing: RUL and SoH estimates, analysis of results 
Figure 4 is a plot of the SoH estimates produced by ATTF for the FFP signature data shown in Figure 2; 

and Figure 5 is a plot of the relative accuracy of the SoH and RUL estimates. It is seen that in less than 10 

data points, the ATTF algorithms converged to solution accuracy of better than 90% and better than 95% 

in less than 15 data points. Measurements of accuracy of RUL and SoH estimates are based on a method 



of accuracy used for straight-line transfer curves, differential non-linearity (DNL), that is then used in a 

NASA-defined measurement of accuracy, Relative Accuracy (RA) (Saxena, 2010, 20 pages): 

               (4)     

              (5) 

 

Where RULIDEAL (or SoHIDEAL) is a point in time on the ideal RUL (or SoH) transfer curve (blue 

lines in Figure 4) and RULESTIMATE (or SoHESTIMATE) is the estimate at that point in time. 

 

Given the noisy, stepped nature of the FFP signature data and the small size of the data set, the accuracy 

results for both the RUL and the SoH estimates are evaluated as excellent. 
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Figure 4: RUL (left-side) and SoH (right-side) estimates for the FFP signature shown in Figure 2 
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Figure 5: Relative accuracy as a ratio for the SoH and RUL estimates shown in Figure 4  



3.2 System RUL and SoH 
The RUL and SoH results for each FFP signature are analyzed by MAPR algorithms to calculate estimated 

RUL and SoH values for the system for each data point: the smallest RUL and SoH values for all of the 

FFP signatures. The MAPR algorithms also identify the failure mode(s): power supply filter, one or more of 

the six power switching MOSFETs, and/or excessive friction (load) place on the motor stator. 

3.3 Training and memory 

The prognostic methods presented in this paper do not require any training: FFP signature models 

represent prior knowledge. The methods are also not memory- or compute-intensive: all memory 

requirements for prognostic purposes are in less than 50 variables and constants maintained in header 

and trailer areas of the FFP signature model. The time to process a data set of 1344 data points was less 

than 180 milliseconds.  

4. Basic description of the ATTF algorithms 

The four model points of amplitude and time are used to calculate initial values of the amplitude coefficient 

AO and the life parameter in Eq(6), which is used as an FFP signature model. 

 

               (6) 

Where the data amplitude is a at time t, AO is the amplitude coefficient, and t is the life parameter. 

 

After initialization of the model, the amplitude and time of each data point is compared to the model 

amplitude at time t. The value of the model life parameter is adjusted, and the adjusted FFP signature 

model is extended to produce an estimate of the time-to-failure (TTF). The estimated RUL is the difference 

between TTF and the current data time. An estimated SoH is determined using Eq(7). 

 

            (7) 

Where at time t, RULEST is the estimated RUL value and TTF is the estimated time-to-failure. 

  

5. Summary 

In this paper we presented benefits of PHM-enabled systems and we introduced the concept of complex 

systems, and discussed a specific complex system that has a switch-mode power supply, a brushless 

motor, and motor controls such as a Pulse Width Modulator. That system was prognostic-enabled to use 

condition-based data for anomaly detection and prognostic reasoning. The prognostic-enablement was 

achieved by accepting and processing condition-based data from the system 1553 bus; performing special 

data conditioning to extract FFP signatures; using Kalman Filtering to filter out noise; and then using ATTF 

algorithms to adapt FFP signature models to condition-based data values. For each data point, an adapted 

FFP signature model is used to project an estimated failure time, from which estimated RUL and SoH 

values are calculated. MAPR algorithms are used to evaluate the RUL and SoH results to estimate the 

RUL and SoH values for the system, and to identify the failure modes. The MAPR, conditioning, filtering, 

and ATTF algorithms do not require training; they produce fast and accurate RUL and SoH estimates. 
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