Testing and Design-for-Testability Solutions for 3D ICs

The Hype, Myths, and Realities

Krishnendu Chakrabarty
Department of Electrical and Computer Engineering
Department of Computer Science
Duke University
Outline

• Technology Overview
• Hype, Myths, and Reality
• 3D IC Test Challenges
 – What to test? When to test? How to test?

• Emerging Solutions
 – Recent advances
 – Some controversies
Stacking with Through-Silicon Vias (TSVs)

Traditional stacking with:
3D chip stacking with wire-bonds:
Heterogeneous technologies
Not-so-dense integration, Not-so-small footprint

New stacking technology:
Through-Silicon Vias (TSVs):
Metal vias that provide interconnects from front-side to back-side through silicon substrate

<table>
<thead>
<tr>
<th>Diameter</th>
<th>5 µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>50 µm</td>
</tr>
<tr>
<td>Aspect ratio</td>
<td>10:1</td>
</tr>
<tr>
<td>Minimum pitch</td>
<td>10 µm</td>
</tr>
</tbody>
</table>
Applications

Memory-on-Logic (JEDEC Wide I/O DRAM)

- 4 channels (a-c)
- 4 x 128 bit = 512 bit I/O
- 4 x 4.25 Gbytes/s = 17 Gbytes/s bandwidth
- Up to 4 stacked dies (Rank 0-3)
Future applications:

- Logic-on-logic
- Multi-tower stacks (both logic-on-logic and memory-on-logic)
Difficult to process wafers thinned below 100 microns

- Mount wafers on temporary wafer handlers (carriers)
- Thinning and backside processing

Option 1: Mount IC wafer face-down on carrier, bond “face-up” (B2F)
 - Scalable solution, supports more stacked layers

Option 2: Bond wafer to 3D stack in “face-down” configuration (F2F)
 - More interconnects between active device on two layers
 - Number of stacked dies limited to 2
Fabrication of IC Stacks

IC Tier 1
- Aligned F2F bonding
- Thinning
- F2F

IC Tier 2
- Temporary bonding
- Thinning
- Aligned B2F bonding
- B2F

Face
- Back

Carrier Wafer
Steps in F2F Bonding

- Align
- Bonding
- Thinning (grinding)
- Backside via and bump process
Steps in B2F Bonding

1. temporary carrier bonding
2. back-side thinning
3. expose Cu nails
4. permanent bonding
5. temp, carrier de-bonding
Hype: Industry Trends in 3D Integration

3D-IC Reference Flow: CoWoS

TSV process for narrow pitch: 10µm

20nm technology with TSVs

About to stack DRAM on Volta GPUs

Research in 10µm-pitch micro-bumps

€25M investment for in-house production of 3D ICs
Hype: Industry Trends in 3D Integration

3D-IC Reference Flow: CoWoS

TSV process for narrow pitch: 10µm

20nm technology with TSVs

About to stack DRAM on Volta GPUs

Research in 10µm-pitch micro-bumps

€25M investment for in-house production of 3D ICs
Hype: EDA Support for 3D Flows

- Tools for 3D included in TSMC Reference Flow
- Validated on a memory-on-logic design with Wide-I/O DRAM
- Collaborates with A*STAR IME to Optimize Through-Silicon-Interposer (TSI) Technology
3D ICs: Reality

- 3D stacking technology demonstrated on silicon (but limited)
 - Xilinx, TSMC, GlobalFoundries, AMD

- Cost remains ultimate challenge

- Efficient 3D IC ecosystem needed for high-volume manufacturing
3D ICs: Reality (AMD “Fiji”)

First high-volume interposer
First Through Silicon Vias (TSVs) and
μBumps in the graphics industry
Most discrete dies (22) in a single package
Total 1011 sq. mm.
186k μBumps, 25k C4 bumps

4GB High-Bandwidth Memory
4096-bit wide interface
512 Gb/s Memory Bandwidth

Graphics Core Next Architecture
64 Compute Units
4096 Stream Processors
596 sq. mm. Engine

Jeff Rearick, 3D Test Workshop, 2015
Reality: Need for 3D IC Ecosystem

- 3D tools
- 3D partitioning
- Floor planning
- Interface standards: Wide I/O, test I/O
- 3D tools
- Libaries
- PDKs
- Ref. flows
- Cost models
- Test strategies

[source: cadence.com]
Reality: Supply Chain Needed
From Two to Three (or More?) Test Insertions

Known Good Die (KGD) test

Known Good Stack (KGS) test

2D Flow
- wafer fab
- wafer test
- assembly & packaging
- final test
- Pre-Bond Wafer Test
 - KGD for stacking
 - ATE + wafer probe station

3D Flow
- wafer fab 1
- wafer fab 2
- wafer fab 3
- pre-bond wafer test 1
- pre-bond wafer test 2
- pre-bond wafer test 3
- 3D stacking
- post-bond wafer test
- assembly & packaging
- final test

Test Content, Test Delivery, Test Resource Optimization and Reuse (Cost Minimization)
3D Test Challenges

- How to test the interposer?
- Micro-bump probe access
 - Probe needles much larger than TSV/micro-bump size and pitch
- Probe card applies force (weight)
 - TSVs/microbumps have low fracture strength
- Post-bond access: No direct access to non-bottom dies
- New defects due to TSV manufacturing process

[IMEC]
TSV Defect

- **How to test the TSVs? Pre-bond, post-bond**
 - Underfill, pinhole defects, opens: pre-bond
 - Misalignment, mechanical/thermal stress: post-bond thermal effects

Examples of TSV Defects (IMEC, Belgium)
TSV Defects

(a) – Fault-free TSV
(b) – Resistive-open defect
(c) – Leakage defect
TSV Defects (Contd.)

Stress-induced defects
- Copper area
- Silicon area
- Overall area

<table>
<thead>
<tr>
<th>Cu - area</th>
<th>Si - area</th>
<th>Overall area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal mismatch (extrinsic stress)</td>
<td>Rapid grain growth (intrinsic stress)</td>
<td>Bump process-induced stress</td>
</tr>
<tr>
<td>▪ TSV extrusion</td>
<td>▪ Void formation</td>
<td>▪ Plastic deformation & fracture in bump and soldering</td>
</tr>
<tr>
<td>▪ Debonding</td>
<td>▪ Void growth & coalescence</td>
<td>G. Lee et al – 3DIC'12</td>
</tr>
<tr>
<td>▪ Bump crack & delamination</td>
<td>▪ Crack generation & propagation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ Cu-induced residual stress</td>
<td></td>
</tr>
</tbody>
</table>
Pre-Bond Testing of TSVs: Myth or Reality

• Some semiconductor companies say no!
 – Too fragile, too difficult to test pre-bond
 – Process people will fix the yield problem!
 – “We deal with much larger number of vias through DFM rules, and TSVs are at least an order of magnitude larger…”

• But…
 – TSV defects affect surrounding silicon!
 – So more testing of die logic needed
 – Micro-bump defects not addressed as easily by process fixes
 – Probing solutions on the horizon
Cascade Microtech’s Probe Technology

- Pyramid Probes® Rocking Beam Interp.
- MEMS-type thin-film probe card
- Lithographically-defined probe tips

IMEC’s 2.5D Test Chip ‘Vesuvius-2.5D’

- Full four-bank JEDEC Wide-I/O interface (= 1,200 micro-bumps)
- Daisy-chains through micro-bumps

Demonstrated

- Successful probing with single-channel Wide-I/O probe card on Cascade Microtech CM300 probe station
- Limited probe marks on micro-bumps: Cu and Cu/Ni/Sn (after reflow)
- No measureable impact of probing on stacking yield
- 3D-COSTAR: Economic feasibility in single-site testing
NanoPierce™ TSV Contact Solution (FormFactor)

- Socket contacts
- Down to 20 µm array pitch
- Flexible film with many nanofibers
TSV Probing for Die Logic Testing (Duke Univ.)

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chakrabarty et al.</td>
<td>Date of Patent: Jul. 15, 2014</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(54) SCAN TEST OF DIE LOGIC IN 3D ICS USING TSV PROBING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicant: Duke University, Durham, NC (US)</td>
</tr>
<tr>
<td>Inventors: Krishnendu Chakrabarty, Chapel Hill, NC (US); Brandon Noia, Durham, NC (US)</td>
</tr>
<tr>
<td>Assignee: Duke University, Durham, NC (US)</td>
</tr>
<tr>
<td>Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 128 days.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(56) References Cited</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. PATENT DOCUMENTS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference</th>
<th>Date</th>
<th>Authors</th>
<th>Patent Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011/0080185</td>
<td>4/2011</td>
<td>Wu et al.</td>
<td>324/750.3</td>
</tr>
<tr>
<td>2012/0242367</td>
<td>9/2012</td>
<td>Goel</td>
<td>326/16</td>
</tr>
<tr>
<td>2012/0280231</td>
<td>11/2012</td>
<td>Ito et al.</td>
<td>257/48</td>
</tr>
<tr>
<td>2013/0024737</td>
<td>1/2013</td>
<td>Marinissen et al.</td>
<td>714/727</td>
</tr>
<tr>
<td>2013/0293255</td>
<td>11/2013</td>
<td>Wu et al.</td>
<td>324/762.01</td>
</tr>
</tbody>
</table>

OTHER PUBLICATIONS

* cited by examiner

Noia et al., *IEEE Trans. VLSI Systems*, 2015
Non-Invasive Pre-Bond TSV Test

(Deutsch and Chakrabarty, TCAD 2014, ITC 2015)

\[C = 60 \text{ fF} \]
\[R_O = 0 \ldots 3 \text{ k}\Omega \]
\[R_L = 0 \ldots 10 \text{ k}\Omega \]

a) Fault-free case: lumped capacitor \(C = 60 \text{ fF} \)
 \((R_{TSV} < 1 \text{ \Omega} \rightarrow \text{neglect } R_{TSV}) \)

b) Resistive open fault: \(R_O = 0 \ldots 3 \text{ k}\Omega \text{ at the location } x \)

c) Leakage fault: \(R_L = 0 \ldots 10 \text{ k}\Omega \)

Main idea: parametric test for \(R_O \) and \(R_L \)
Ring Oscillator Configuration

Functional circuitry:

Design-for-Test extension:
Ring Oscillator Configuration

- Measure difference $\Delta T = T_1 - T_2$ to reduce inaccuracy due to random process variations
- ΔT sensitive to defects in TSVs
 - $\Delta T \downarrow$ if resistive open
 - $\Delta T \uparrow$ if leakage
Using Duty Cycle for Pre-Bond TSV Test

Definitions:
- Oscillation period: $T_{osc} = T_{on} + T_{off}$
- Duty cycle: $D = \frac{T_{on}}{T_{on} + T_{off}}$

Fault-free
($G_L = 0, R_O = 0$)
\[
D \approx 0.5
\]

Leakage fault
($G_L > 0$)

Resistive-open fault
($R_O > 0$)

T_{on} increases, T_{osc} increases, D decreases

T_{off} increases, D unchanged

T_{on} decreases, T_{osc} unchanged

T_{off} decreases, D decreases
Regression Model Based on Artificial Neural Networks

- **Objective**: determine fault type and size based on measurements
- Use artificial neural networks (ANNs):
 - Efficient for complex systems with large number of inputs
 - Require sufficient number of samples for training

Generic ANN architecture:

Input layer --- Hidden layer --- Output layer

Neurons:

\[F(\Sigma w_i \alpha_i) \]

Common transfer functions:

- Pure linear \(F(\xi) = \xi \)
- Sigmoid \(F(\xi) = \frac{1}{1+\exp(-\xi)} \)
Regression Model Based on ANN

- **Class-net**: classification network to determine fault type
- **G_L-net**: function-fitting network to determine G_L
- **R_O-net**: function-fitting network to determine R_O

- **Inputs**: $\{T_{osc}, T_{osc,b}, D, D_b\}$ measured at K voltage levels
- Two sets of training and test data (10,000 MC samples each)

- $K = 8$ ($V_{dd} = 0.85 \ldots 1.2V$)

- G_L from 0 (fault-free) to 450 μS (strong leakage)

- R_O from 0 (fault-free) to 5000 Ω (strong resistive open)
Evaluation of Class-net

1. Train Class-net using training sample set

2. Predict fault class using Class-net for evaluation sample set

3. Compare output class with actual (target) class for each sample
Evaluation of Class-net

Confusion matrix:

<table>
<thead>
<tr>
<th>Output Class</th>
<th>Target Class</th>
<th>class_leak</th>
<th>class_open</th>
<th>class_dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>class_leak</td>
<td>9524 (33.3%)</td>
<td>58 (0.2%)</td>
<td>0 (0.0%)</td>
<td></td>
</tr>
<tr>
<td>class_open</td>
<td>37 (0.1%)</td>
<td>9818 (34.4%)</td>
<td>135 (0.5%)</td>
<td></td>
</tr>
<tr>
<td>class_dual</td>
<td>0 (0.0%)</td>
<td>124 (0.4%)</td>
<td>8865 (31.0%)</td>
<td></td>
</tr>
</tbody>
</table>

- **Correct prediction**
- **Misprediction**

→Number of mispredictions is relatively small
Evaluation of G_L-net and R_O-net

T_{osc} alone good enough as input parameter?

- Comparison with models using only oscillation period
- All models trained using same training data set

\[
K \times \{T_{osc}, T_{osc,b}, D, D_b\} \rightarrow G_L\text{-net} \rightarrow G_L
\]
\[
K \times \{T_{osc}, T_{osc,b}\} \rightarrow G_L\text{-net}_r \rightarrow G_L
\]
\[
K \times \{T_{osc}, T_{osc,b}, D, D_b\} \rightarrow R_O\text{-net} \rightarrow R_O
\]
\[
K \times \{T_{osc}, T_{osc,b}\} \rightarrow R_O\text{-net}_r \rightarrow R_O
\]

- Performance evaluation metric: mean squared error (MSE)

\[
MSE = \frac{1}{N} \sum_{i=1}^{N} (y_{p,i} - y_{t,i})^2
\]

- $y_{p,i}$ target value
- $y_{t,i}$ predicted value
Evaluation of G_L-net

Error histograms of G_L-net and G_L-net_r at $G_L = 100$ μS.

\rightarrow G_L-net more accurate (less spread around zero error)
Evaluation of G_L-net

- MSE of G_L-net and G_L-net_r for different values of G_L.

\[MSE = \frac{1}{N} \sum_{i=1}^{N} (y_{p,i} - y_{t,i})^2 \]

→ using D as additional input increases diagnosis accuracy for weak leakage (<100 µS)
Do we need to test at multiple voltage levels?

→ improved diagnosis accuracy using multiple voltage levels
Conclusions

- 3D fabrication and assembly steps (TSVs, alignment, bonding, thinning, etc.) lead to unique defects
- Known test methods can be utilized (extended) for some problems
 - Post-bond test access, IEEE P1838
- Out-of-the-box thinking needed for other test challenges
 - Pre-bond testing (KGD, TSV testing, die logic testing)
 - Cost modeling (when and what to test)
Traffic Lights

KGD, Pre-bond test, Probing

Post-bond test access, DfT, optimization, standards

2.5D: interposer, microbumps, RDL

Test flows

Defect understanding, test content

Thermal-aware testing?

Power integrity?

Clock-domain crossings?

BIST?

Repair?

Test compression?

Debug?
Target TSVs in Production Test and Volume Diagnostics?
TSV Redundancy?
Yield Learning for a 3D Stack?